These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
869 related articles for article (PubMed ID: 12068100)
1. Signals involved in Arabidopsis resistance to Trichoplusia ni caterpillars induced by virulent and avirulent strains of the phytopathogen Pseudomonas syringae. Cui J; Jander G; Racki LR; Kim PD; Pierce NE; Ausubel FM Plant Physiol; 2002 Jun; 129(2):551-64. PubMed ID: 12068100 [TBL] [Abstract][Full Text] [Related]
2. Proteomics and functional analyses of Arabidopsis nitrilases involved in the defense response to microbial pathogens. Choi du S; Lim CW; Hwang BK Planta; 2016 Aug; 244(2):449-65. PubMed ID: 27095107 [TBL] [Abstract][Full Text] [Related]
3. The Pseudomonas syringae type III effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana. Chen Z; Kloek AP; Cuzick A; Moeder W; Tang D; Innes RW; Klessig DF; McDowell JM; Kunkel BN Plant J; 2004 Feb; 37(4):494-504. PubMed ID: 14756766 [TBL] [Abstract][Full Text] [Related]
4. The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Mishina TE; Zeier J Plant Physiol; 2006 Aug; 141(4):1666-75. PubMed ID: 16778014 [TBL] [Abstract][Full Text] [Related]
5. Isolation of new Arabidopsis mutants with enhanced disease susceptibility to Pseudomonas syringae by direct screening. Volko SM; Boller T; Ausubel FM Genetics; 1998 Jun; 149(2):537-48. PubMed ID: 9611172 [TBL] [Abstract][Full Text] [Related]
6. Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. van Wees SC; Glazebrook J Plant J; 2003 Feb; 33(4):733-42. PubMed ID: 12609045 [TBL] [Abstract][Full Text] [Related]
7. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Cui J; Bahrami AK; Pringle EG; Hernandez-Guzman G; Bender CL; Pierce NE; Ausubel FM Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1791-6. PubMed ID: 15657122 [TBL] [Abstract][Full Text] [Related]
8. NHL25 and NHL3, two NDR1/HIN1-1ike genes in Arabidopsis thaliana with potential role(s) in plant defense. Varet A; Parker J; Tornero P; Nass N; Nürnberger T; Dangl JL; Scheel D; Lee J Mol Plant Microbe Interact; 2002 Jun; 15(6):608-16. PubMed ID: 12059109 [TBL] [Abstract][Full Text] [Related]
9. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Dong X; Mindrinos M; Davis KR; Ausubel FM Plant Cell; 1991 Jan; 3(1):61-72. PubMed ID: 1824335 [TBL] [Abstract][Full Text] [Related]
10. A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Shah J; Kachroo P; Nandi A; Klessig DF Plant J; 2001 Mar; 25(5):563-74. PubMed ID: 11309146 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a novel, defense-related Arabidopsis mutant, cir1, isolated by luciferase imaging. Murray SL; Thomson C; Chini A; Read ND; Loake GJ Mol Plant Microbe Interact; 2002 Jun; 15(6):557-66. PubMed ID: 12059104 [TBL] [Abstract][Full Text] [Related]
12. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. Zheng Z; Mosher SL; Fan B; Klessig DF; Chen Z BMC Plant Biol; 2007 Jan; 7():2. PubMed ID: 17214894 [TBL] [Abstract][Full Text] [Related]
13. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Kus JV; Zaton K; Sarkar R; Cameron RK Plant Cell; 2002 Feb; 14(2):479-90. PubMed ID: 11884688 [TBL] [Abstract][Full Text] [Related]
14. Virulence of the phytopathogen Pseudomonas syringae pv. maculicola is rpoN dependent. Hendrickson EL; Guevera P; Peñaloza-Vàzquez A; Shao J; Bender C; Ausubel FM J Bacteriol; 2000 Jun; 182(12):3498-507. PubMed ID: 10852883 [TBL] [Abstract][Full Text] [Related]
15. Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Chandra-Shekara AC; Navarre D; Kachroo A; Kang HG; Klessig D; Kachroo P Plant J; 2004 Dec; 40(5):647-59. PubMed ID: 15546349 [TBL] [Abstract][Full Text] [Related]
16. Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. Reuber TL; Ausubel FM Plant Cell; 1996 Feb; 8(2):241-9. PubMed ID: 8742710 [TBL] [Abstract][Full Text] [Related]
17. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Wubben MJ; Jin J; Baum TJ Mol Plant Microbe Interact; 2008 Apr; 21(4):424-32. PubMed ID: 18321188 [TBL] [Abstract][Full Text] [Related]
18. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Ferrari S; Plotnikova JM; De Lorenzo G; Ausubel FM Plant J; 2003 Jul; 35(2):193-205. PubMed ID: 12848825 [TBL] [Abstract][Full Text] [Related]
19. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Zhang Y; Goritschnig S; Dong X; Li X Plant Cell; 2003 Nov; 15(11):2636-46. PubMed ID: 14576290 [TBL] [Abstract][Full Text] [Related]
20. The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Rate DN; Greenberg JT Plant J; 2001 Aug; 27(3):203-11. PubMed ID: 11532166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]