These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12068580)

  • 21. Cometabolic biotransformation of nitrobenzene by 3-nitrophenol degrading Pseudomonas putida 2NP8.
    Zhao JS; Ward OP
    Can J Microbiol; 2000 Jul; 46(7):643-52. PubMed ID: 10932358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [p-Nitrophenol].
    Kunugita N; Oyama T; Kawamoto T
    Nihon Rinsho; 2004 Dec; 62 Suppl 12():495-7. PubMed ID: 15658373
    [No Abstract]   [Full Text] [Related]  

  • 23. [Selectivity in the detection of methylethylthiophos, metaphos and methylnitrophos in forensic chemical analysis].
    Gorbacheva NA
    Sud Med Ekspert; 1977; 20(2):48-51. PubMed ID: 860303
    [No Abstract]   [Full Text] [Related]  

  • 24. Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001.
    Pakala SB; Gorla P; Pinjari AB; Krovidi RK; Baru R; Yanamandra M; Merrick M; Siddavattam D
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1452-62. PubMed ID: 17043828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Construction of a versatile degrading bacteria Pseudomonas putida KT2440-DOP and its degrading characteristics].
    Gu LF; He J; Huang X; Jia KZ; Li SP
    Wei Sheng Wu Xue Bao; 2006 Oct; 46(5):763-6. PubMed ID: 17172025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of parathion in vegetables by electrochemical sensor based on molecularly imprinted polyethyleneimine/silica gel films.
    Yang Q; Sun Q; Zhou T; Shi G; Jin L
    J Agric Food Chem; 2009 Aug; 57(15):6558-63. PubMed ID: 19586029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA.
    Viswanathan S; Radecka H; Radecki J
    Biosens Bioelectron; 2009 May; 24(9):2772-7. PubMed ID: 19269805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Detection of metaphos, methylnitrophos and methylethylthiophos in forensic chemical analysis].
    Gorbacheva NA
    Farmatsiia; 1977; 26(6):67-8. PubMed ID: 598536
    [No Abstract]   [Full Text] [Related]  

  • 29. Biotransformation of hydroxylaminobenzene and aminophenol by Pseudomonas putida 2NP8 cells grown in the presence of 3-nitrophenol.
    Zhao JS; Singh A; Huang XD; Ward OP
    Appl Environ Microbiol; 2000 Jun; 66(6):2336-42. PubMed ID: 10831408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Isolation, degradation and phylogenetic analysis of methylparathion degradative strain X4].
    Xie XP; Yan YC; Liu PP
    Wei Sheng Wu Xue Bao; 2006 Dec; 46(6):979-83. PubMed ID: 17302165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfacial interaction between methyl parathion-degrading bacteria and minerals is important in biodegradation.
    Zhao G; Huang Q; Rong X; Cai P; Liang W; Dai K
    Biodegradation; 2014 Feb; 25(1):1-9. PubMed ID: 23549926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benzene analysis in workplace air using an FIA-based bacterial biosensor.
    Lanyon YH; Marrazza G; Tothill IE; Mascini M
    Biosens Bioelectron; 2005 Apr; 20(10):2089-96. PubMed ID: 15741079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86.
    Basu A; Apte SK; Phale PS
    Appl Environ Microbiol; 2006 Mar; 72(3):2226-30. PubMed ID: 16517677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis of the hydantoin hydrolysis pathway in Pseudomonas putida RU-KM3S.
    Matcher GF; Burton SG; Dorrington RA
    Appl Microbiol Biotechnol; 2004 Sep; 65(4):391-400. PubMed ID: 15064875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing methyl parathion degradation by the immobilization of Burkholderia sp. isolated from agricultural soils.
    Fernández-López MG; Popoca-Ursino C; Sánchez-Salinas E; Tinoco-Valencia R; Folch-Mallol JL; Dantán-González E; Laura Ortiz-Hernández M
    Microbiologyopen; 2017 Oct; 6(5):. PubMed ID: 28714263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere.
    Sarkar S; Seenivasan S; Asir RP
    J Hazard Mater; 2010 Feb; 174(1-3):295-8. PubMed ID: 19892461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mineralization of paraoxon and its use as a sole C and P source by a rationally designed catabolic pathway in Pseudomonas putida.
    de la Peña Mattozzi M; Tehara SK; Hong T; Keasling JD
    Appl Environ Microbiol; 2006 Oct; 72(10):6699-706. PubMed ID: 17021221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PnpB involvement in the regulation of temperature-sensitive para-nitrophenol degradation in Pseudomonas putida MT54 via PnpA.
    Huang Y; Tu H; Zheng W; Duan Y; Li Z; Cui Z
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1575-1580. PubMed ID: 30131251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico analysis for prediction of degradative capacity of Pseudomonas putida SF1.
    Tikariha H; Pal RR; Qureshi A; Kapley A; Purohit HJ
    Gene; 2016 Oct; 591(2):382-92. PubMed ID: 27317892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous cultures of Pseudomonas putida mt-2 overcome catabolic function loss under real case operating conditions.
    Muñoz R; Hernández M; Segura A; Gouveia J; Rojas A; Ramos JL; Villaverde S
    Appl Microbiol Biotechnol; 2009 May; 83(1):189-98. PubMed ID: 19277642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.