BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12069083)

  • 1. Characterization of miniature tissue-equivalent proportional counters for neutron radiotherapy applications.
    Burmeister J; Kota C; Maughan RL; Waker AJ
    Phys Med Biol; 2002 May; 47(10):1633-45. PubMed ID: 12069083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniature tissue-equivalent proportional counters for BNCT and BNCEFNT dosimetry.
    Burmeister J; Kota C; Maughan RL; Waker AJ
    Med Phys; 2001 Sep; 28(9):1911-25. PubMed ID: 11585222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetry of the boron neutron capture reaction for BNCT and BNCEFNT.
    Burmeister J; Kota C; Maughan RL
    Strahlenther Onkol; 1999 Jun; 175 Suppl 2():115-8. PubMed ID: 10394417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of TEPC microdosimetry to boron neutron capture therapy.
    Burmeister J; Kota C; Maughan RL; Waker AJ; Riley K; Wielopolski L
    Radiat Prot Dosimetry; 2002; 99(1-4):351-2. PubMed ID: 12194321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of low-pressure tissue equivalent proportional counters for the dosimetry of neutron beams used in BNCT and BNCEFNT.
    Kota C; Maughan RL; Tattam D; Beynon TD
    Med Phys; 2000 Mar; 27(3):535-48. PubMed ID: 10757605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measured microdosimetric spectra and therapeutic potential of boron neutron capture enhancement of 252Cf brachytherapy.
    Burmeister J; Kota C; Maughan RL
    Radiat Res; 2005 Sep; 164(3):312-8. PubMed ID: 16137204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microdosimetry of an accelerator based thermal neutron field for Boron Neutron Capture Therapy.
    Selva A; Bellan L; Bianchi A; Giustiniani G; Colautti P; Fagotti E; Pisent A; Conte V
    Appl Radiat Isot; 2022 Apr; 182():110144. PubMed ID: 35168037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microdosimetry for boron neutron capture therapy.
    Wuu CS; Amols HI; Kliauga P; Reinstein LE; Saraf S
    Radiat Res; 1992 Jun; 130(3):355-9. PubMed ID: 1594762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microdosimetric spectra of the THOR neutron beam for boron neutron capture therapy.
    Hsu FY; Tung CJ; Watt DE
    Radiat Prot Dosimetry; 2003; 104(2):121-6. PubMed ID: 12918789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dosimetry system for boron neutron capture therapy based on the dual counter microdosimetric technique.
    Kota C; Maughan RL
    Bull Cancer Radiother; 1996; 83 Suppl():173s-5s. PubMed ID: 8949773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two miniaturised TEPCS in a single detector for BNCT microdosimetry.
    Moro D; Colautti P; Gualdrini G; Masi M; Conte V; De Nardo L; Tornielli G
    Radiat Prot Dosimetry; 2006; 122(1-4):396-400. PubMed ID: 17251248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdosimetric quantities of an accelerator-based neutron source used for boron neutron capture therapy measured using a gas-filled proportional counter.
    Hu N; Tanaka H; Takata T; Okazaki K; Uchida R; Sakurai Y
    J Radiat Res; 2020 Mar; 61(2):214-220. PubMed ID: 32030430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microdosimetry of neutron field for boron neutron capture therapy at Kyoto university reactor.
    Endo S; Onizuka Y; Ishikawa M; Takada M; Sakurai Y; Kobayashi T; Tanaka K; Hoshi M; Shizuma K
    Radiat Prot Dosimetry; 2004; 110(1-4):641-4. PubMed ID: 15353723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron neutron capture enhancement of fast neutron radiotherapy utilizing a moderated fast neutron beam.
    Burmeister J; Yudelev M; Kota C; Maughan RL
    Med Phys; 2005 Mar; 32(3):666-72. PubMed ID: 15839338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdosimetric evaluation of the neutron field for BNCT at Kyoto University reactor by using the PHITS code.
    Baba H; Onizuka Y; Nakao M; Fukahori M; Sato T; Sakurai Y; Tanaka H; Endo S
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):528-32. PubMed ID: 21199830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advantage and limitations of weighting factors and weighted dose quantities and their units in boron neutron capture therapy.
    Rassow J; Sauerwein W; Wittig A; Bourhis-Martin E; Hideghéty K; Moss R
    Med Phys; 2004 May; 31(5):1128-34. PubMed ID: 15191301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early clinical experience utilizing scintillator with optical fiber (SOF) detector in clinical boron neutron capture therapy: its issues and solutions.
    Ishikawa M; Yamamoto T; Matsumura A; Hiratsuka J; Miyatake S; Kato I; Sakurai Y; Kumada H; Shrestha SJ; Ono K
    Radiat Oncol; 2016 Aug; 11(1):105. PubMed ID: 27506665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
    Nguyen TT; Kajimoto T; Tanaka K; Nguyen CC; Endo S
    Med Phys; 2016 Nov; 43(11):6049. PubMed ID: 27806584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phantom materials for boron neutron capture therapy.
    Raaijmakers CP; Nottelman EL; Mijnheer BJ
    Phys Med Biol; 2000 Aug; 45(8):2353-61. PubMed ID: 10958199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.