These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12069163)

  • 1. In vivo kinetic analysis of covalent binding between N-acetyl-L-cysteine and plasma protein through the formation of mixed disulfide in rats.
    Harada D; Naito S; Hiraoka I; Otagiri M
    Pharm Res; 2002 May; 19(5):615-20. PubMed ID: 12069163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of reduced, protein-unbound, and total concentrations of N-acetyl-L-cysteine and L-cysteine in rat plasma by postcolumn ligand substitution high-performance liquid chromatography.
    Harada D; Naito S; Kawauchi Y; Ishikawa K; Koshitani O; Hiraoka I; Otagiri M
    Anal Biochem; 2001 Mar; 290(2):251-9. PubMed ID: 11237327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of covalent binding between N-acetyl-L-cysteine and albumin through the formation of mixed disulfides in human and rat serum in vitro.
    Harada D; Naito S; Otagiri M
    Pharm Res; 2002 Nov; 19(11):1648-54. PubMed ID: 12458670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of N-acetylcysteine and cysteine in human plasma.
    Radtke KK; Coles LD; Mishra U; Orchard PJ; Holmay M; Cloyd JC
    J Pharm Sci; 2012 Dec; 101(12):4653-9. PubMed ID: 23018672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of N-acetylcysteine stereoisomers on oxygen-induced lung injury in rats.
    Särnstrand B; Tunek A; Sjödin K; Hallberg A
    Chem Biol Interact; 1995 Feb; 94(2):157-64. PubMed ID: 7828222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies of covalent binding between N-acetyl-L-cysteine and human serum albumin through a mixed-disulfide using an N-methylpyridinium polymer-based column.
    Harada D; Anraku M; Fukuda H; Naito S; Harada K; Suenaga A; Otagiri M
    Drug Metab Pharmacokinet; 2004 Aug; 19(4):297-302. PubMed ID: 15499198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N -Acetyl-cysteine reduces homocysteine plasma levels after single intravenous administration by increasing thiols urinary excretion.
    Ventura P; Panini R; Pasini MC; Scarpetta G; Salvioli G
    Pharmacol Res; 1999 Oct; 40(4):345-50. PubMed ID: 10527647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient hepatic uptake and concentrative biliary excretion of a mercapturic acid.
    Hinchman CA; Rebbeor JF; Ballatori N
    Am J Physiol; 1998 Oct; 275(4):G612-9. PubMed ID: 9756488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacokinetics of N-acetylcysteine following repeated intravenous infusion in haemodialysed patients.
    Soldini D; Zwahlen H; Gabutti L; Marzo A; Marone C
    Eur J Clin Pharmacol; 2005 Feb; 60(12):859-64. PubMed ID: 15657783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacokinetics of intravenous N-acetylcysteine in men at rest and during exercise.
    Brown M; Bjorksten A; Medved I; McKenna M
    Eur J Clin Pharmacol; 2004 Dec; 60(10):717-23. PubMed ID: 15619135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma elimination of indocyanine green in the intact pig after bolus injection and during constant infusion: comparison of spectrophotometry and high-pressure liquid chromatography for concentration analysis.
    Ott P; Keiding S; Bass L
    Hepatology; 1993 Dec; 18(6):1504-15. PubMed ID: 8244277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disposition of azole antifungal agents. I. Nonlinearities in ketoconazole clearance and binding in rat liver.
    Matthew D; Brennan B; Zomorodi K; Houston JB
    Pharm Res; 1993 Mar; 10(3):418-22. PubMed ID: 8464816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-acetyl-L-tyrosine and N-acetyl-L-cysteine as tyrosine and cysteine precursors during intravenous infusion in humans.
    Magnusson I; Ekman L; Wångdahl M; Wahren J
    Metabolism; 1989 Oct; 38(10):957-61. PubMed ID: 2507878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacokinetics and bioavailability of reduced and oxidized N-acetylcysteine.
    Olsson B; Johansson M; Gabrielsson J; Bolme P
    Eur J Clin Pharmacol; 1988; 34(1):77-82. PubMed ID: 3360052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravenous Administration of Stable-Labeled N-Acetylcysteine Demonstrates an Indirect Mechanism for Boosting Glutathione and Improving Redox Status.
    Zhou J; Coles LD; Kartha RV; Nash N; Mishra U; Lund TC; Cloyd JC
    J Pharm Sci; 2015 Aug; 104(8):2619-26. PubMed ID: 26052837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of plasma protein binding on quinidine kinetics in the rabbit.
    Guentert TW; Oie S
    J Pharmacol Exp Ther; 1980 Oct; 215(1):165-71. PubMed ID: 7452481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacokinetics of N-acetylcysteine after oral and intravenous administration to healthy cats.
    Buur JL; Diniz PP; Roderick KV; KuKanich B; Tegzes JH
    Am J Vet Res; 2013 Feb; 74(2):290-3. PubMed ID: 23363356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disposition kinetics of disopyramide in human healthy volunteers described by an open three compartment model.
    Bonde J; Jensen NM; Pedersen LE; Angelo HR; Rasmussen SN; Trap-Jensen J; Kampmann JP
    Pharmacol Toxicol; 1989 May; 64(5):412-6. PubMed ID: 2771866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.
    Amano H; Kazamori D; Itoh K; Kodera Y
    Drug Metab Dispos; 2015 May; 43(5):749-55. PubMed ID: 25681129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of quinidine metabolism and plasma protein binding by phenobarbital in dogs.
    Rakhit A; Holford NH; Effeney DJ; Riegelman S
    J Pharmacokinet Biopharm; 1984 Oct; 12(5):495-515. PubMed ID: 6520745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.