These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 12069317)
1. Evaluation of the effect of reactive sulfide on the acute toxicity of silver (I) to Daphnia magna. Part 2: toxicity results. Bianchini A; Bowles KC; Brauner CJ; Gorsuch JW; Kramer JR; Wood CM Environ Toxicol Chem; 2002 Jun; 21(6):1294-300. PubMed ID: 12069317 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the effect of reactive sulfide on the acute toxicity of silver (I) to Daphnia magna. Part 1: description of the chemical system. Bowles KC; Bianchini A; Brauner CJ; Kramer JR; Wood CM Environ Toxicol Chem; 2002 Jun; 21(6):1286-93. PubMed ID: 12069316 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the protective effects of reactive sulfide on the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss). Mann RM; Ernste MJ; Bell RA; Kramer JR; Wood CM Environ Toxicol Chem; 2004 May; 23(5):1204-10. PubMed ID: 15180371 [TBL] [Abstract][Full Text] [Related]
4. Does sulfide or water hardness protect against chronic silver toxicity in Daphnia magna? A critical assessment of the acute-to-chronic toxicity ratio for silver. Bianchini A; Wood CM Ecotoxicol Environ Saf; 2008 Sep; 71(1):32-40. PubMed ID: 18472162 [TBL] [Abstract][Full Text] [Related]
5. Silver accumulation in Daphnia magna in the presence of reactive sulfide. Bianchini A; Rouleau C; Wood CM Aquat Toxicol; 2005 May; 72(4):339-49. PubMed ID: 15848253 [TBL] [Abstract][Full Text] [Related]
6. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Zhao CM; Wang WX Environ Toxicol Chem; 2011 Apr; 30(4):885-92. PubMed ID: 21191880 [TBL] [Abstract][Full Text] [Related]
7. Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Hoheisel SM; Diamond S; Mount D Environ Toxicol Chem; 2012 Nov; 31(11):2557-63. PubMed ID: 22887018 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of acute silver toxicity in Daphnia magna. Bianchini A; Wood CM Environ Toxicol Chem; 2003 Jun; 22(6):1361-7. PubMed ID: 12785595 [TBL] [Abstract][Full Text] [Related]
9. Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Allen HJ; Impellitteri CA; Macke DA; Heckman JL; Poynton HC; Lazorchak JM; Govindaswamy S; Roose DL; Nadagouda MN Environ Toxicol Chem; 2010 Dec; 29(12):2742-50. PubMed ID: 20890913 [TBL] [Abstract][Full Text] [Related]
10. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Zhao CM; Wang WX Nanotoxicology; 2012 Jun; 6(4):361-70. PubMed ID: 21591875 [TBL] [Abstract][Full Text] [Related]
11. Exposure medium: key in identifying free Ag+ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. Shen MH; Zhou XX; Yang XY; Chao JB; Liu R; Liu JF Sci Rep; 2015 Apr; 5():9674. PubMed ID: 25858866 [TBL] [Abstract][Full Text] [Related]
12. Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates. Bury NR; Shaw J; Glover C; Hogstrand C Comp Biochem Physiol C Toxicol Pharmacol; 2002 Sep; 133(1-2):259-70. PubMed ID: 12356532 [TBL] [Abstract][Full Text] [Related]
13. Acute silver toxicity in aquatic animals is a function of sodium uptake rate. Bianchini A; Grosell M; Gregory SM; Wood CM Environ Sci Technol; 2002 Apr; 36(8):1763-6. PubMed ID: 11993875 [TBL] [Abstract][Full Text] [Related]
14. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Santore RC; Di Toro DM; Paquin PR; Allen HE; Meyer JS Environ Toxicol Chem; 2001 Oct; 20(10):2397-402. PubMed ID: 11596775 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of metal sulfide clusters for toxicological studies. Bowles LC; Bell RA; Ernste MJ; Kramer JR; Manolopoulos H; Ogden N Environ Toxicol Chem; 2002 Apr; 21(4):693-9. PubMed ID: 11951940 [TBL] [Abstract][Full Text] [Related]
16. Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: development and validation of a biotic ligand model. Heijerick DG; De Schamphelaere KA; Janssen CR Environ Toxicol Chem; 2002 Jun; 21(6):1309-15. PubMed ID: 12069319 [TBL] [Abstract][Full Text] [Related]
17. Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Das P; Xenopoulos MA; Metcalfe CD Bull Environ Contam Toxicol; 2013 Jul; 91(1):76-82. PubMed ID: 23708262 [TBL] [Abstract][Full Text] [Related]
18. Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Kim J; Kim S; Lee S Nanotoxicology; 2011 Jun; 5(2):208-14. PubMed ID: 20804438 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of acute and chronic waterborne nickel toxicity in the freshwater cladoceran, Daphnia magna. Pane EF; Smith C; McGeer JC; Wood CM Environ Sci Technol; 2003 Oct; 37(19):4382-9. PubMed ID: 14572089 [TBL] [Abstract][Full Text] [Related]
20. Bioaccumulation of silver nanoparticles into Daphnia magna from a freshwater algal diet and the impact of phosphate availability. McTeer J; Dean AP; White KN; Pittman JK Nanotoxicology; 2014 May; 8(3):305-16. PubMed ID: 23421707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]