These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12069317)

  • 21. Physiological effects of chronic silver exposure in Daphnia magna.
    Bianchini A; Wood CM
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Sep; 133(1-2):137-45. PubMed ID: 12356523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters.
    De Schamphelaere KA; Lofts S; Janssen CR
    Environ Toxicol Chem; 2005 May; 24(5):1190-7. PubMed ID: 16110999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silver nanowire exposure results in internalization and toxicity to Daphnia magna.
    Scanlan LD; Reed RB; Loguinov AV; Antczak P; Tagmount A; Aloni S; Nowinski DT; Luong P; Tran C; Karunaratne N; Pham D; Lin XX; Falciani F; Higgins CP; Ranville JF; Vulpe CD; Gilbert B
    ACS Nano; 2013 Dec; 7(12):10681-94. PubMed ID: 24099093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation study of the acute biotic ligand model for silver.
    Bielmyer GK; Grosell M; Paquin PR; Mathews R; Wu KB; Santore RC; Brix KV
    Environ Toxicol Chem; 2007 Oct; 26(10):2241-6. PubMed ID: 17867882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subcellular distribution of zinc in Daphnia magna and implication for toxicity.
    Wang WX; Guan R
    Environ Toxicol Chem; 2010 Aug; 29(8):1841-8. PubMed ID: 20821640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free silver ion as the main cause of acute and chronic toxicity of silver nanoparticles to cladocerans.
    Sakamoto M; Ha JY; Yoneshima S; Kataoka C; Tatsuta H; Kashiwada S
    Arch Environ Contam Toxicol; 2015 Apr; 68(3):500-9. PubMed ID: 25352442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna.
    Li T; Albee B; Alemayehu M; Diaz R; Ingham L; Kamal S; Rodriguez M; Bishnoi SW
    Anal Bioanal Chem; 2010 Sep; 398(2):689-700. PubMed ID: 20577719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological interactions of silver and humic substances in Daphnia magna: effects on reproduction and silver accumulation following an acute silver challenge.
    Glover CN; Wood CM
    Comp Biochem Physiol C Toxicol Pharmacol; 2004 Dec; 139(4):273-80. PubMed ID: 15683838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments.
    Völker C; Boedicker C; Daubenthaler J; Oetken M; Oehlmann J
    PLoS One; 2013; 8(10):e75026. PubMed ID: 24116021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna.
    Gaiser BK; Biswas A; Rosenkranz P; Jepson MA; Lead JR; Stone V; Tyler CR; Fernandes TF
    J Environ Monit; 2011 May; 13(5):1227-35. PubMed ID: 21499624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of ligand-bound silver on Ceriodaphnia dubia.
    Bielmyer GK; Bell RA; Klaine SJ
    Environ Toxicol Chem; 2002 Oct; 21(10):2204-8. PubMed ID: 12371499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of chronic waterborne nickel exposure on two successive generations of Daphnia magna.
    Pane EF; McGeer JC; Wood CM
    Environ Toxicol Chem; 2004 Apr; 23(4):1051-6. PubMed ID: 15095904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Size-dependent uptake of silver nanoparticles in Daphnia magna.
    Zhao CM; Wang WX
    Environ Sci Technol; 2012 Oct; 46(20):11345-51. PubMed ID: 22974052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silver nanoparticle-specific mitotoxicity in Daphnia magna.
    Stensberg MC; Madangopal R; Yale G; Wei Q; Ochoa-Acuña H; Wei A; McLamore ES; Rickus J; Porterfield DM; Sepúlveda MS
    Nanotoxicology; 2014 Dec; 8(8):833-42. PubMed ID: 23927462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna.
    Rainville LC; Carolan D; Varela AC; Doyle H; Sheehan D
    Analyst; 2014 Apr; 139(7):1678-86. PubMed ID: 24482795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of multigeneration acclimation to copper on tolerance, energy reserves, and homeostasis of Daphnia magna straus.
    Bossuyt BT; Janssen CR
    Environ Toxicol Chem; 2004 Aug; 23(8):2029-37. PubMed ID: 15352494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential impact of low-concentration silver nanoparticles on predator-prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey.
    Pokhrel LR; Dubey B
    Environ Sci Technol; 2012 Jul; 46(14):7755-62. PubMed ID: 22697289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accumulation and regulation of zinc in Daphnia magna: links with homeostasis and toxicity.
    Muyssen BT; Janssen CR
    Arch Environ Contam Toxicol; 2002 Nov; 43(4):492-6. PubMed ID: 12399922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioavailability of sediment-associated Cu and Zn to Daphnia magna.
    Gillis PL; Wood CM; Ranville JF; Chow-Fraser P
    Aquat Toxicol; 2006 May; 77(4):402-11. PubMed ID: 16488492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna.
    Muyssen BT; De Schamphelaere KA; Janssen CR
    Aquat Toxicol; 2006 May; 77(4):393-401. PubMed ID: 16472524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.