These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12069330)

  • 1. In vivo bone tissue response to a canasite glass-ceramic.
    da Rocha Barros VM; Salata LA; Sverzut CE; Xavier SP; van Noort R; Johnson A; Hatton PV
    Biomaterials; 2002 Jul; 23(14):2895-900. PubMed ID: 12069330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of fibrin on osseointegration of bioactive glass-ceramic materials--experimental study].
    Urban K; Povýsil C; Spelda S
    Acta Chir Orthop Traumatol Cech; 2001; 68(3):168-75. PubMed ID: 11706539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histologic comparison of ceramic and titanium implants in cats.
    Barth E; Johansson C; Albrektsson T
    Int J Oral Maxillofac Implants; 1990; 5(3):227-31. PubMed ID: 2098326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility of zirconia dispersed hydroxyapatite ceramics.
    Suzuki O; Suda A; Sato T; Takagi M; Osanai T
    Nihon Seikeigeka Gakkai Zasshi; 1990 Apr; 64(4):249-59. PubMed ID: 2166117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone-bonding behavior under load-bearing conditions of an alumina ceramic implant incorporating beads coated with glass-ceramic containing apatite and wollastonite.
    Li ZL; Kitsugi T; Yamamuro T; Chang YS; Senaha Y; Takagi H; Nakamura T; Oka M
    J Biomed Mater Res; 1995 Sep; 29(9):1081-8. PubMed ID: 8567706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone response to zirconia ceramic implants: an experimental study in rabbits.
    Scarano A; Di Carlo F; Quaranta M; Piattelli A
    J Oral Implantol; 2003; 29(1):8-12. PubMed ID: 12614079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility tests on a novel glass-ceramic system.
    Wolfe LA; Boyde A
    J Appl Biomater; 1992; 3(3):217-24. PubMed ID: 10171553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2.
    Alam MI; Asahina I; Ohmamiuda K; Takahashi K; Yokota S; Enomoto S
    Biomaterials; 2001 Jun; 22(12):1643-51. PubMed ID: 11374466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue.
    Nakamura T; Yamamuro T; Higashi S; Kokubo T; Itoo S
    J Biomed Mater Res; 1985; 19(6):685-98. PubMed ID: 3001094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone-implant interface and remaining tissues on the implant surface after push-out test: an SEM observation.
    Li J
    Biomed Mater Eng; 1997; 7(6):379-85. PubMed ID: 9622105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning electron microscopy-electron probe microanalysis study of the interface between apatite and wollastonite-containing glass-ceramic and rabbit tibia under load-bearing conditions after long-term implantation.
    Kitsugi T; Yamamuro T; Nakamura T; Oka M; Kokubo T; Okunaga K; Shibuya T
    Calcif Tissue Int; 1995 Apr; 56(4):331-5. PubMed ID: 7767846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of sections of implanted macroporous calcium phosphate bone substitutes by proton-induced X-emission method and energy-dispersive spectrometry.
    Frayssinet P; Braye F; Weber G
    Scanning; 1997 Jun; 19(4):253-7. PubMed ID: 9195748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying crystallinity.
    Chang YL; Lew D; Park JB; Keller JC
    J Oral Maxillofac Surg; 1999 Sep; 57(9):1096-108; discussion 1108-9. PubMed ID: 10484111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface mechanics and histomorphometric analysis of hydroxyapatite-coated and porous glass-ceramic implants in canine bone.
    Nimb L; Jensen JS; Gotfredsen K
    J Biomed Mater Res; 1995 Dec; 29(12):1477-82. PubMed ID: 8600137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic response of the rabbit femur to a hydroxyapatite thermal decomposition product-fibrin glue mixture.
    Nakamura K; Koshino T; Saito T
    Biomaterials; 1998 Oct; 19(20):1901-7. PubMed ID: 9855192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of bone-like formation on a bioactive implant in vivo.
    De Aza PN; Luklinska ZB; Santos C; Guitian F; De Aza S
    Biomaterials; 2003 Apr; 24(8):1437-45. PubMed ID: 12527285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic, and hydroxyapatite.
    Oonishi H; Hench LL; Wilson J; Sugihara F; Tsuji E; Matsuura M; Kin S; Yamamoto T; Mizokawa S
    J Biomed Mater Res; 2000 Jul; 51(1):37-46. PubMed ID: 10813743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of calvarial defects by bioresorbable ceramics: an experimental study in rats.
    Schliephake H; Redecker K; Kage T
    Mund Kiefer Gesichtschir; 1997 Mar; 1(2):115-20. PubMed ID: 9384790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymethylmethacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxyapatite.
    Heikkilä JT; Aho AJ; Kangasniemi I; Yli-Urpo A
    Biomaterials; 1996 Sep; 17(18):1755-60. PubMed ID: 8879512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of bone regeneration using resorbable ceramics and a polymer-ceramic composite material.
    Schliephake H; Kage T
    J Biomed Mater Res; 2001 Jul; 56(1):128-36. PubMed ID: 11309799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.