BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12069576)

  • 1. Light-induced changes in the structure and accessibility of the cytoplasmic loops of rhodopsin in the activated MII state.
    Mielke T; Alexiev U; Gläsel M; Otto H; Heyn MP
    Biochemistry; 2002 Jun; 41(25):7875-84. PubMed ID: 12069576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of the nature of the conformational changes of the EF-interhelical loop in bacteriorhodopsin and of the helix VIII on the cytoplasmic surface of bovine rhodopsin: a time-resolved fluorescence depolarization study.
    Alexiev U; Rimke I; Pöhlmann T
    J Mol Biol; 2003 May; 328(3):705-19. PubMed ID: 12706727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constraints on the conformation of the cytoplasmic face of dark-adapted and light-excited rhodopsin inferred from antirhodopsin antibody imprints.
    Bailey BW; Mumey B; Hargrave PA; Arendt A; Ernst OP; Hofmann KP; Callis PR; Burritt JB; Jesaitis AJ; Dratz EA
    Protein Sci; 2003 Nov; 12(11):2453-75. PubMed ID: 14573859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light and pH-induced Changes in Structure and Accessibility of Transmembrane Helix B and Its Immediate Environment in Channelrhodopsin-2.
    Volz P; Krause N; Balke J; Schneider C; Walter M; Schneider F; Schlesinger R; Alexiev U
    J Biol Chem; 2016 Aug; 291(33):17382-93. PubMed ID: 27268055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops.
    Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG
    Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between cysteine pairs engineered in cytoplasmic loops 1, 3, and 4.
    Cai K; Klein-Seetharaman J; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12479-85. PubMed ID: 11601971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection of environmental changes at the cytoplasmic surface of light-activated bacteriorhodopsin and visual rhodopsin: sequence of spectrally silent steps.
    Kim TY; Moeller M; Winkler K; Kirchberg K; Alexiev U
    Photochem Photobiol; 2009; 85(2):570-7. PubMed ID: 19222795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure.
    Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Cai K; Khorana HG; Hubbell WL
    Biochemistry; 1999 Jun; 38(25):7931-7. PubMed ID: 10387035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1.
    Altenbach C; Klein-Seetharaman J; Cai K; Khorana HG; Hubbell WL
    Biochemistry; 2001 Dec; 40(51):15493-500. PubMed ID: 11747424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM; Abdulaev NG; Marino JP; Ridge KD
    Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study.
    Farahbakhsh ZT; Ridge KD; Khorana HG; Hubbell WL
    Biochemistry; 1995 Jul; 34(27):8812-9. PubMed ID: 7612622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface charge changes upon formation of the signaling state in visual rhodopsin.
    Möller M; Alexiev U
    Photochem Photobiol; 2009; 85(2):501-8. PubMed ID: 19222792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation stabilizes the active conformation of rhodopsin.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 1998 Aug; 37(33):11393-8. PubMed ID: 9708973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins.
    Tsukamoto H; Farrens DL; Koyanagi M; Terakita A
    J Biol Chem; 2009 Jul; 284(31):20676-83. PubMed ID: 19497849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of transmembrane domain helix-III during rhodopsin photoactivation.
    Ou WB; Yi T; Kim JM; Khorana HG
    PLoS One; 2011 Feb; 6(2):e17398. PubMed ID: 21364764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.