These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 12069576)
1. Light-induced changes in the structure and accessibility of the cytoplasmic loops of rhodopsin in the activated MII state. Mielke T; Alexiev U; Gläsel M; Otto H; Heyn MP Biochemistry; 2002 Jun; 41(25):7875-84. PubMed ID: 12069576 [TBL] [Abstract][Full Text] [Related]
2. Elucidation of the nature of the conformational changes of the EF-interhelical loop in bacteriorhodopsin and of the helix VIII on the cytoplasmic surface of bovine rhodopsin: a time-resolved fluorescence depolarization study. Alexiev U; Rimke I; Pöhlmann T J Mol Biol; 2003 May; 328(3):705-19. PubMed ID: 12706727 [TBL] [Abstract][Full Text] [Related]
3. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy. Hoersch D; Otto H; Wallat I; Heyn MP Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221 [TBL] [Abstract][Full Text] [Related]
4. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8. Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527 [TBL] [Abstract][Full Text] [Related]
5. Constraints on the conformation of the cytoplasmic face of dark-adapted and light-excited rhodopsin inferred from antirhodopsin antibody imprints. Bailey BW; Mumey B; Hargrave PA; Arendt A; Ernst OP; Hofmann KP; Callis PR; Burritt JB; Jesaitis AJ; Dratz EA Protein Sci; 2003 Nov; 12(11):2453-75. PubMed ID: 14573859 [TBL] [Abstract][Full Text] [Related]
6. Light and pH-induced Changes in Structure and Accessibility of Transmembrane Helix B and Its Immediate Environment in Channelrhodopsin-2. Volz P; Krause N; Balke J; Schneider C; Walter M; Schneider F; Schlesinger R; Alexiev U J Biol Chem; 2016 Aug; 291(33):17382-93. PubMed ID: 27268055 [TBL] [Abstract][Full Text] [Related]
7. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1. Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970 [TBL] [Abstract][Full Text] [Related]
8. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741 [TBL] [Abstract][Full Text] [Related]
9. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation. Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036 [TBL] [Abstract][Full Text] [Related]
10. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between cysteine pairs engineered in cytoplasmic loops 1, 3, and 4. Cai K; Klein-Seetharaman J; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 2001 Oct; 40(42):12479-85. PubMed ID: 11601971 [TBL] [Abstract][Full Text] [Related]
11. Dissection of environmental changes at the cytoplasmic surface of light-activated bacteriorhodopsin and visual rhodopsin: sequence of spectrally silent steps. Kim TY; Moeller M; Winkler K; Kirchberg K; Alexiev U Photochem Photobiol; 2009; 85(2):570-7. PubMed ID: 19222795 [TBL] [Abstract][Full Text] [Related]
12. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure. Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034 [TBL] [Abstract][Full Text] [Related]
13. Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study. Altenbach C; Cai K; Khorana HG; Hubbell WL Biochemistry; 1999 Jun; 38(25):7931-7. PubMed ID: 10387035 [TBL] [Abstract][Full Text] [Related]
14. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1. Altenbach C; Klein-Seetharaman J; Cai K; Khorana HG; Hubbell WL Biochemistry; 2001 Dec; 40(51):15493-500. PubMed ID: 11747424 [TBL] [Abstract][Full Text] [Related]
15. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin. Brabazon DM; Abdulaev NG; Marino JP; Ridge KD Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157 [TBL] [Abstract][Full Text] [Related]
16. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study. Farahbakhsh ZT; Ridge KD; Khorana HG; Hubbell WL Biochemistry; 1995 Jul; 34(27):8812-9. PubMed ID: 7612622 [TBL] [Abstract][Full Text] [Related]
17. Surface charge changes upon formation of the signaling state in visual rhodopsin. Möller M; Alexiev U Photochem Photobiol; 2009; 85(2):501-8. PubMed ID: 19222792 [TBL] [Abstract][Full Text] [Related]
18. Phosphorylation stabilizes the active conformation of rhodopsin. Gibson SK; Parkes JH; Liebman PA Biochemistry; 1998 Aug; 37(33):11393-8. PubMed ID: 9708973 [TBL] [Abstract][Full Text] [Related]
19. The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins. Tsukamoto H; Farrens DL; Koyanagi M; Terakita A J Biol Chem; 2009 Jul; 284(31):20676-83. PubMed ID: 19497849 [TBL] [Abstract][Full Text] [Related]
20. The roles of transmembrane domain helix-III during rhodopsin photoactivation. Ou WB; Yi T; Kim JM; Khorana HG PLoS One; 2011 Feb; 6(2):e17398. PubMed ID: 21364764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]