BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 12069581)

  • 1. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides.
    Futaki S; Nakase I; Suzuki T; Youjun Z; Sugiura Y
    Biochemistry; 2002 Jun; 41(25):7925-30. PubMed ID: 12069581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural variety of membrane permeable peptides.
    Futaki S; Goto S; Suzuki T; Nakase I; Sugiura Y
    Curr Protein Pept Sci; 2003 Apr; 4(2):87-96. PubMed ID: 12678848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane permeability commonly shared among arginine-rich peptides.
    Futaki S; Goto S; Sugiura Y
    J Mol Recognit; 2003; 16(5):260-4. PubMed ID: 14523938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-permeable arginine-rich peptides and the translocation mechanisms.
    Futaki S
    Adv Drug Deliv Rev; 2005 Feb; 57(4):547-58. PubMed ID: 15722163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms.
    Futaki S
    Int J Pharm; 2002 Oct; 245(1-2):1-7. PubMed ID: 12270237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery.
    Futaki S; Suzuki T; Ohashi W; Yagami T; Tanaka S; Ueda K; Sugiura Y
    J Biol Chem; 2001 Feb; 276(8):5836-40. PubMed ID: 11084031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms.
    Futaki S
    Biopolymers; 2006; 84(3):241-9. PubMed ID: 16333858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition.
    Calnan BJ; Biancalana S; Hudson D; Frankel AD
    Genes Dev; 1991 Feb; 5(2):201-10. PubMed ID: 1899841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters.
    Wender PA; Mitchell DJ; Pattabiraman K; Pelkey ET; Steinman L; Rothbard JB
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13003-8. PubMed ID: 11087855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TAT peptide internalization: seeking the mechanism of entry.
    Vivès E; Richard JP; Rispal C; Lebleu B
    Curr Protein Pept Sci; 2003 Apr; 4(2):125-32. PubMed ID: 12678851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus.
    Vivès E; Brodin P; Lebleu B
    J Biol Chem; 1997 Jun; 272(25):16010-7. PubMed ID: 9188504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stearylated arginine-rich peptides: a new class of transfection systems.
    Futaki S; Ohashi W; Suzuki T; Niwa M; Tanaka S; Ueda K; Harashima H; Sugiura Y
    Bioconjug Chem; 2001; 12(6):1005-11. PubMed ID: 11716693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis.
    Nakase I; Tadokoro A; Kawabata N; Takeuchi T; Katoh H; Hiramoto K; Negishi M; Nomizu M; Sugiura Y; Futaki S
    Biochemistry; 2007 Jan; 46(2):492-501. PubMed ID: 17209559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translocation of a beta-peptide across cell membranes.
    Umezawa N; Gelman MA; Haigis MC; Raines RT; Gellman SH
    J Am Chem Soc; 2002 Jan; 124(3):368-9. PubMed ID: 11792194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective side-chain modification of cysteine and arginine residues blocks pathogenic activity of HIV-1-Tat functional peptides.
    Devadas K; Boykins RA; Hardegen NJ; Philp D; Kleinman HK; Osa EO; Wang J; Clouse KA; Wahl LM; Hewlett IK; Rappaport J; Yamada KM; Dhawan S
    Peptides; 2006 Apr; 27(4):611-21. PubMed ID: 16256245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane binding and translocation of cell-penetrating peptides.
    Thorén PE; Persson D; Esbjörner EK; Goksör M; Lincoln P; Nordén B
    Biochemistry; 2004 Mar; 43(12):3471-89. PubMed ID: 15035618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides.
    Herce HD; Garcia AE; Litt J; Kane RS; Martin P; Enrique N; Rebolledo A; Milesi V
    Biophys J; 2009 Oct; 97(7):1917-25. PubMed ID: 19804722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine-rich membrane-permeable peptides are seriously toxic.
    Li Q; Xu M; Cui Y; Huang C; Sun M
    Pharmacol Res Perspect; 2017 Oct; 5(5):. PubMed ID: 28971613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocytosis and membrane potential are required for HeLa cell uptake of R.I.-CKTat9, a retro-inverso Tat cell penetrating peptide.
    Zhang X; Jin Y; Plummer MR; Pooyan S; Gunaseelan S; Sinko PJ
    Mol Pharm; 2009; 6(3):836-48. PubMed ID: 19278221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells.
    Kawamura KS; Sung M; Bolewska-Pedyczak E; Gariépy J
    Biochemistry; 2006 Jan; 45(4):1116-27. PubMed ID: 16430208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.