BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 12069922)

  • 1. Physical analysis of the process of cavitation in xylem sap.
    Shen F; Gao R; Liu W; Zhang W
    Tree Physiol; 2002 Jun; 22(9):655-9. PubMed ID: 12069922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A careful physical analysis of gas bubble dynamics in xylem.
    Shen F; Wenji L; Rongfu G; Hu H
    J Theor Biol; 2003 Nov; 225(2):229-33. PubMed ID: 14575656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three types of cavitation caused by air seeding.
    Shen F; Wang Y; Cheng Y; Zhang L
    Tree Physiol; 2012 Nov; 32(11):1413-9. PubMed ID: 23100258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of bubble growth leading to xylem conduit embolism.
    Hölttä T; Vesala T; Nikinmaa E
    J Theor Biol; 2007 Nov; 249(1):111-23. PubMed ID: 17706683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires.
    Michaletz ST; Johnson EA; Tyree MT
    New Phytol; 2012 Apr; 194(1):254-263. PubMed ID: 22276783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species.
    Christman MA; Sperry JS; Smith DD
    New Phytol; 2012 Feb; 193(3):713-720. PubMed ID: 22150784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension.
    Laschimke R; Burger M; Vallen H
    J Plant Physiol; 2006 Oct; 163(10):996-1007. PubMed ID: 16872717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanobubbles: a new paradigm for air-seeding in xylem.
    Schenk HJ; Steppe K; Jansen S
    Trends Plant Sci; 2015 Apr; 20(4):199-205. PubMed ID: 25680733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How reliable are methods to assess xylem vulnerability to cavitation? The issue of 'open vessel' artifact in oaks.
    Martin-StPaul NK; Longepierre D; Huc R; Delzon S; Burlett R; Joffre R; Rambal S; Cochard H
    Tree Physiol; 2014 Aug; 34(8):894-905. PubMed ID: 25074860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir.: Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses.
    Ooeda H; Terashima I; Taneda H
    Plant Cell Physiol; 2017 Feb; 58(2):354-364. PubMed ID: 28013275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size.
    Pittermann J; Sperry JS
    Plant Physiol; 2006 Jan; 140(1):374-82. PubMed ID: 16377751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the 'rare pit' hypothesis for xylem cavitation resistance in three species of Acer.
    Christman MA; Sperry JS; Adler FR
    New Phytol; 2009; 182(3):664-674. PubMed ID: 19434805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometrical and physicochemical considerations of the pit membrane in relation to air seeding: the pit membrane as a capillary valve.
    Meyra AG; Kuz VA; Zarragoicoechea GJ
    Tree Physiol; 2007 Oct; 27(10):1401-5. PubMed ID: 17669730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling of angiosperm xylem structure with safety and efficiency.
    Hacke UG; Sperry JS; Wheeler JK; Castro L
    Tree Physiol; 2006 Jun; 26(6):689-701. PubMed ID: 16510385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic surface tension of xylem sap lipids.
    Yang J; M Michaud J; Jansen S; Schenk HJ; Zuo YY
    Tree Physiol; 2020 Apr; 40(4):433-444. PubMed ID: 32031666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of the types of cavitation by air seeding using light microscopy.
    Shen F; Cheng Y; Zhang L; Gao R; Shao X
    Tree Physiol; 2015 Dec; 35(12):1325-32. PubMed ID: 26338303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.
    Wang Y; Pan R; Tyree MT
    Plant Physiol; 2015 Jun; 168(2):521-31. PubMed ID: 25907963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze/Thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation.
    Sevanto S; Holbrook NM; Ball MC
    Front Plant Sci; 2012; 3():107. PubMed ID: 22685446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for discontinuous water columns in the xylem conduit of tall birch trees.
    Westhoff M; Zimmermann D; Schneider H; Wegner LH; Gessner P; Jakob P; Bamberg E; Shirley S; Bentrup FW; Zimmermann U
    Plant Biol (Stuttg); 2009 May; 11(3):307-27. PubMed ID: 19470103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases.
    Qin D; Lei S; Chen B; Li Z; Wang W; Ji X
    Ultrason Sonochem; 2023 Jul; 97():106456. PubMed ID: 37271030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.