BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12069976)

  • 1. Diversity of beta-lactam resistance-conferring amino acid substitutions in penicillin-binding protein 3 of Haemophilus influenzae.
    Dabernat H; Delmas C; Seguy M; Pelissier R; Faucon G; Bennamani S; Pasquier C
    Antimicrob Agents Chemother; 2002 Jul; 46(7):2208-18. PubMed ID: 12069976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL.
    Weiss DS; Chen JC; Ghigo JM; Boyd D; Beckwith J
    J Bacteriol; 1999 Jan; 181(2):508-20. PubMed ID: 9882665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invasive Group A Streptococcal Penicillin Binding Protein 2× Variants Associated with Reduced Susceptibility to β-Lactam Antibiotics in the United States, 2015-2021.
    Chochua S; Metcalf B; Li Z; Mathis S; Tran T; Rivers J; Fleming-Dutra KE; Li Y; McGee L; Beall B
    Antimicrob Agents Chemother; 2022 Sep; 66(9):e0080222. PubMed ID: 35969070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First molecular characterization of group B streptococci with reduced penicillin susceptibility.
    Kimura K; Suzuki S; Wachino J; Kurokawa H; Yamane K; Shibata N; Nagano N; Kato H; Shibayama K; Arakawa Y
    Antimicrob Agents Chemother; 2008 Aug; 52(8):2890-7. PubMed ID: 18490507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redefining the role of psr in beta-lactam resistance and cell autolysis of Enterococcus hirae.
    Sapunaric F; Franssen C; Stefanic P; Amoroso A; Dardenne O; Coyette J
    J Bacteriol; 2003 Oct; 185(20):5925-35. PubMed ID: 14526002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid substitutions in the region between RpoB clusters II and III on rifampin susceptibility in Haemophilus influenzae.
    Ho CH; Chen CJ; Hsieh CY; Su PY
    Eur J Clin Microbiol Infect Dis; 2023 Dec; 42(12):1499-1509. PubMed ID: 37906391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrine reverses the resistance of
    Zhao J; Yang W; Deng H; Li D; Wang Q; Yi L; Kuang Q; Xu R; Li D; Li R; Yu D; Yang B
    Front Microbiol; 2024; 15():1364339. PubMed ID: 38559355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of the role of the penicillin binding protein 2c (Pbp2c) in inducible β-lactam resistance in
    Lavollay M; Buon C; Le Moigne V; Compain F; Guyonvarch A; Fonvielle M
    Front Microbiol; 2024; 15():1327723. PubMed ID: 38784795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seven draft genome sequences of
    Kawara Y; Goto M; Maeda T; Yoshida H; Tsuyuki Y; Takahashi T
    Microbiol Resour Announc; 2024 Jun; 13(6):e0021924. PubMed ID: 38742884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial resistance in Haemophilus influenzae.
    Tristram S; Jacobs MR; Appelbaum PC
    Clin Microbiol Rev; 2007 Apr; 20(2):368-89. PubMed ID: 17428889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horizontal gene transfer of ftsI, encoding penicillin-binding protein 3, in Haemophilus influenzae.
    Takahata S; Ida T; Senju N; Sanbongi Y; Miyata A; Maebashi K; Hoshiko S
    Antimicrob Agents Chemother; 2007 May; 51(5):1589-95. PubMed ID: 17325223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of SNP-based PCR methods for the detection of β-lactamase-negative ampicillin-resistant Haemophilus influenzae.
    Witherden EA; Kunde D; Tristram SG
    J Infect Chemother; 2012 Aug; 18(4):451-5. PubMed ID: 22203122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutant ftsI genes in the emergence of penicillin-binding protein-mediated beta-lactam resistance in Haemophilus influenzae in Norway.
    Skaare D; Allum AG; Anthonisen IL; Jenkins A; Lia A; Strand L; Tveten Y; Kristiansen BE
    Clin Microbiol Infect; 2010 Aug; 16(8):1117-24. PubMed ID: 19737286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic approach to study the relationship between penicillin-binding protein 3 mutations and Haemophilus influenzae beta-lactam resistance by using site-directed mutagenesis and gene recombinants.
    Osaki Y; Sanbongi Y; Ishikawa M; Kataoka H; Suzuki T; Maeda K; Ida T
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2834-9. PubMed ID: 15980357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and molecular characterization of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin.
    Kaczmarek FS; Gootz TD; Dib-Hajj F; Shang W; Hallowell S; Cronan M
    Antimicrob Agents Chemother; 2004 May; 48(5):1630-9. PubMed ID: 15105114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of Haemophilus influenzae R factors.
    Laufs R; Riess FC; Jahn G; Fock R; Kaulfers PM
    J Bacteriol; 1981 Aug; 147(2):563-8. PubMed ID: 6267014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemic Trends and Biofilm Formation Mechanisms of Haemophilus influenzae: Insights into Clinical Implications and Prevention Strategies.
    Xiao J; Su L; Huang S; Liu L; Ali K; Chen Z
    Infect Drug Resist; 2023; 16():5359-5373. PubMed ID: 37605758
    [No Abstract]   [Full Text] [Related]  

  • 18. Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole.
    Su PY; Cheng WH; Ho CH
    BMC Microbiol; 2023 Jul; 23(1):178. PubMed ID: 37407940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibiotic Susceptibility and Molecular Typing of Invasive
    Giufrè M; Cardines R; Marra M; Carollo M; Cerquetti M; Stefanelli P
    Microorganisms; 2023 Jan; 11(2):. PubMed ID: 36838281
    [No Abstract]   [Full Text] [Related]  

  • 20. High Prevalence of Group III-Like Mutations Among BLPACR and First Report of
    Lin J; Wang Y; Lin C; Li R; Wang G
    Infect Drug Resist; 2023; 16():999-1008. PubMed ID: 36824068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.