These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12070144)

  • 21. Contribution of water molecules in the interior of a protein to the conformational stability.
    Takano K; Funahashi J; Yamagata Y; Fujii S; Yutani K
    J Mol Biol; 1997 Nov; 274(1):132-42. PubMed ID: 9398521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Explicit treatment of water molecules in data-driven protein-protein docking: the solvated HADDOCKing approach.
    Kastritis PL; van Dijk AD; Bonvin AM
    Methods Mol Biol; 2012; 819():355-74. PubMed ID: 22183547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stabilization of proteins by enhancement of inter-residue hydrophobic contacts: lessons of T4 lysozyme and barnase.
    Golovanov AP; Vergoten G; Arseniev AS
    J Biomol Struct Dyn; 2000 Dec; 18(3):477-91. PubMed ID: 11149522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of the hydrophobic effect to globular protein stability.
    Pace CN
    J Mol Biol; 1992 Jul; 226(1):29-35. PubMed ID: 1619660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cavities and atomic packing in protein structures and interfaces.
    Sonavane S; Chakrabarti P
    PLoS Comput Biol; 2008 Sep; 4(9):e1000188. PubMed ID: 19005575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect.
    Xu J; Baase WA; Baldwin E; Matthews BW
    Protein Sci; 1998 Jan; 7(1):158-77. PubMed ID: 9514271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins.
    Tan KP; Nguyen TB; Patel S; Varadarajan R; Madhusudhan MS
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W314-21. PubMed ID: 23766289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative theory of hydrophobic effect as a driving force of protein structure.
    Perunov N; England JL
    Protein Sci; 2014 Apr; 23(4):387-99. PubMed ID: 24408023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structural analysis of mutations in the hydrophobic cores of barnase.
    Buckle AM; Henrick K; Fersht AR
    J Mol Biol; 1993 Dec; 234(3):847-60. PubMed ID: 8254677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding.
    Wong KB; Clarke J; Bond CJ; Neira JL; Freund SM; Fersht AR; Daggett V
    J Mol Biol; 2000 Mar; 296(5):1257-82. PubMed ID: 10698632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Packing and hydrophobicity effects on protein folding and stability: effects of beta-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers.
    Zhu BY; Zhou NE; Kay CM; Hodges RS
    Protein Sci; 1993 Mar; 2(3):383-94. PubMed ID: 8453376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability changes upon mutation of solvent-accessible residues in proteins evaluated by database-derived potentials.
    Gilis D; Rooman M
    J Mol Biol; 1996 Apr; 257(5):1112-26. PubMed ID: 8632471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Packing in molten globules and native states.
    Bhattacharyya S; Varadarajan R
    Curr Opin Struct Biol; 2013 Feb; 23(1):11-21. PubMed ID: 23270864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and energetic consequences of mutations in a solvated hydrophobic cavity.
    Adamek DH; Guerrero L; Blaber M; Caspar DL
    J Mol Biol; 2005 Feb; 346(1):307-18. PubMed ID: 15663946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A molecular dynamics study of thermodynamic and structural aspects of the hydration of cavities in proteins.
    Wade RC; Mazor MH; McCammon JA; Quiocho FA
    Biopolymers; 1991 Jul; 31(8):919-31. PubMed ID: 1782354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ES/IS: estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model.
    Vorobjev YN; Hermans J
    Biophys Chem; 1999 Apr; 78(1-2):195-205. PubMed ID: 10343388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect.
    Tsai CJ; Lin SL; Wolfson HJ; Nussinov R
    Protein Sci; 1997 Jan; 6(1):53-64. PubMed ID: 9007976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conservative mutation Met8 --> Leu affects the folding process and structural stability of squash trypsin inhibitor CMTI-I.
    Zhukov I; Jaroszewski L; BierzyƄski A
    Protein Sci; 2000 Feb; 9(2):273-9. PubMed ID: 10716179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-based analysis of thermodynamic and mechanical properties of cavity-containing proteins--case study of plant pathogenesis-related proteins of class 10.
    Chwastyk M; Jaskolski M; Cieplak M
    FEBS J; 2014 Jan; 281(1):416-29. PubMed ID: 24206126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models.
    Sharp KA; Nicholls A; Friedman R; Honig B
    Biochemistry; 1991 Oct; 30(40):9686-97. PubMed ID: 1911756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.