These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12070346)

  • 1. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior.
    Gómez-Navarro C; Moreno-Herrero F; de Pablo PJ; Colchero J; Gómez-Herrero J; Baró AM
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8484-7. PubMed ID: 12070346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-templated nanowires: morphology and electrical conductivity.
    Watson SM; Pike AR; Pate J; Houlton A; Horrocks BR
    Nanoscale; 2014 Apr; 6(8):4027-37. PubMed ID: 24614835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-templated assembly and electrode attachment of a conducting silver wire.
    Braun E; Eichen Y; Sivan U; Ben-Yoseph G
    Nature; 1998 Feb; 391(6669):775-8. PubMed ID: 9486645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.
    Abdalla S; Obaid A; Al-Marzouki FM
    Nanoscale Res Lett; 2017 Dec; 12(1):316. PubMed ID: 28454482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.
    Liu D; Park SH; Reif JH; LaBean TH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):717-22. PubMed ID: 14709674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the DNA/ethidium bromide interactions on mica surface by atomic force microscope: influence of the surface friction.
    Pastré D; Piétrement O; Zozime A; Le Cam E
    Biopolymers; 2005 Jan; 77(1):53-62. PubMed ID: 15578645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes.
    Zhang J; Boghossian AA; Barone PW; Rwei A; Kim JH; Lin D; Heller DA; Hilmer AJ; Nair N; Reuel NF; Strano MS
    J Am Chem Soc; 2011 Jan; 133(3):567-81. PubMed ID: 21142158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarizability of G4-DNA observed by electrostatic force microscopy measurements.
    Cohen H; Sapir T; Borovok N; Molotsky T; Di Felice R; Kotlyar AB; Porath D
    Nano Lett; 2007 Apr; 7(4):981-6. PubMed ID: 17352504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-range charge transport in single G-quadruplex DNA molecules.
    Livshits GI; Stern A; Rotem D; Borovok N; Eidelshtein G; Migliore A; Penzo E; Wind SJ; Di Felice R; Skourtis SS; Cuevas JC; Gurevich L; Kotlyar AB; Porath D
    Nat Nanotechnol; 2014 Dec; 9(12):1040-6. PubMed ID: 25344689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The conductive properties of single DNA molecules studied by torsion tunneling atomic force microscopy.
    Wang W; Niu DX; Jiang CR; Yang XJ
    Nanotechnology; 2014 Jan; 25(2):025707. PubMed ID: 24334680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyaniline nanowires on Si surfaces fabricated with DNA templates.
    Ma Y; Zhang J; Zhang G; He H
    J Am Chem Soc; 2004 Jun; 126(22):7097-101. PubMed ID: 15174880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical conduction through DNA molecules.
    Fink HW; Schönenberger C
    Nature; 1999 Apr; 398(6726):407-10. PubMed ID: 10201370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AC electrical characterisation and insight to charge transfer mechanisms in DNA molecular wires through temperature and UV effects.
    Kassegne S; Wibowo D; Chi J; Ramesh V; Narenji A; Khosla A; Mokili J
    IET Nanobiotechnol; 2015 Jun; 9(3):153-63. PubMed ID: 26023159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximity-induced superconductivity in DNA.
    Kasumov AY; Kociak M; Guéron S; Reulet B; Volkov VT; Klinov DV; Bouchiat H
    Science; 2001 Jan; 291(5502):280-2. PubMed ID: 11209072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced electron transfer through DNA-decorated single-walled carbon nanotubes.
    Li Y; Kaneko T; Hirotsu Y; Hatakeyama R
    Small; 2010 Jan; 6(1):27-30. PubMed ID: 19943258
    [No Abstract]   [Full Text] [Related]  

  • 17. Probing Electronic Doping of Single-Walled Carbon Nanotubes by Gaseous Ammonia with Dielectric Force Microscopy.
    Zhang J; Lu W; Li YS; Lu D; Zhang T; Wang X; Chen L
    J Phys Chem Lett; 2012 Dec; 3(23):3509-12. PubMed ID: 26290980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of dc-conductivity in lambda-DNA.
    de Pablo PJ; Moreno-Herrero F; Colchero J; Gómez Herrero J; Herrero P; Baró AM; Ordejón P; Soler JM; Artacho E
    Phys Rev Lett; 2000 Dec; 85(23):4992-5. PubMed ID: 11102169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric force microscopy: imaging charge carriers in nanomaterials without electrical contacts.
    Zhang J; Lu W; Li YS; Cai J; Chen L
    Acc Chem Res; 2015 Jul; 48(7):1788-96. PubMed ID: 26061707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.