BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12070764)

  • 1. Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein.
    Hur HG; Beger RD; Heinze TM; Lay JO; Freeman JP; Dore J; Rafii F
    Arch Microbiol; 2002 Jul; 178(1):8-12. PubMed ID: 12070764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine.
    Minamida K; Tanaka M; Abe A; Sone T; Tomita F; Hara H; Asano K
    J Biosci Bioeng; 2006 Sep; 102(3):247-50. PubMed ID: 17046543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces.
    Tamura M; Tsushida T; Shinohara K
    Anaerobe; 2007 Feb; 13(1):32-5. PubMed ID: 17113326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria.
    Wang XL; Kim HJ; Kang SI; Kim SI; Hur HG
    Arch Microbiol; 2007 Feb; 187(2):155-60. PubMed ID: 17109177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium.
    Wang XL; Shin KH; Hur HG; Kim SI
    J Biotechnol; 2005 Feb; 115(3):261-9. PubMed ID: 15639088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [C-ring cleavage of isoflavone daidzein by a newly-isolated facultative Enterococcus hirae AUH-HM195 from Crossoptilon mantchuricum feces].
    Yu F; Wang S; Li J; Zhang Q; Li C; Wang X
    Wei Sheng Wu Xue Bao; 2009 Apr; 49(4):479-84. PubMed ID: 19621635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variations in metabolism of the soy isoflavonoid daidzein by human intestinal microfloras from different individuals.
    Rafii F; Davis C; Park M; Heinze TM; Beger RD
    Arch Microbiol; 2003 Jul; 180(1):11-6. PubMed ID: 12783157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of daidzein by intestinal bacteria from rhesus monkeys (Macaca mulatta).
    Rafii F; Hotchkiss C; Heinze TM; Park M
    Comp Med; 2004 Apr; 54(2):165-9. PubMed ID: 15134361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium.
    Wang XL; Hur HG; Lee JH; Kim KT; Kim SI
    Appl Environ Microbiol; 2005 Jan; 71(1):214-9. PubMed ID: 15640190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine.
    Matthies A; Clavel T; Gütschow M; Engst W; Haller D; Blaut M; Braune A
    Appl Environ Microbiol; 2008 Aug; 74(15):4847-52. PubMed ID: 18539813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of daidzein by fecal bacteria in rats.
    Rafii F; Jackson LD; Ross I; Heinze TM; Lewis SM; Aidoo A; Lyn-Cook L; Manjanatha M
    Comp Med; 2007 Jun; 57(3):282-6. PubMed ID: 17605343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of newly isolated Lactobacillus delbrueckii-like strain MF-07 isolated from chicken and its role in isoflavone biotransformation.
    Iqbal MF; Zhu WY
    FEMS Microbiol Lett; 2009 Feb; 291(2):180-7. PubMed ID: 19146574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria.
    Jin JS; Nishihata T; Kakiuchi N; Hattori M
    Biol Pharm Bull; 2008 Aug; 31(8):1621-5. PubMed ID: 18670101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and identification of a human intestinal bacterium capable of daidzein conversion.
    Guo Y; Zhao L; Fang X; Zhong Q; Liang H; Liang W; Wang L
    FEMS Microbiol Lett; 2021 May; 368(8):. PubMed ID: 33930123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Screening and identification of a bacterium capable of converting daidzein to S-equol].
    Guo Y; Huang Y; Ye J; Zhang X; Xiao M
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):696-702. PubMed ID: 22934349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of isoflavones, lignans and prenylflavonoids by intestinal bacteria: producer phenotyping and relation with intestinal community.
    Possemiers S; Bolca S; Eeckhaut E; Depypere H; Verstraete W
    FEMS Microbiol Ecol; 2007 Aug; 61(2):372-83. PubMed ID: 17506823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of dihydrodaidzein and dihydrogenistein by a novel oxygen-tolerant bovine rumen bacterium in the presence of atmospheric oxygen.
    Zhao H; Wang XL; Zhang HL; Li CD; Wang SY
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):803-13. PubMed ID: 21626023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postmenopausal bone mineral density in relation to soy isoflavone-metabolizing phenotypes.
    Frankenfeld CL; McTiernan A; Thomas WK; LaCroix K; McVarish L; Holt VL; Schwartz SM; Lampe JW
    Maturitas; 2006 Feb; 53(3):315-24. PubMed ID: 16019168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin.
    Hur HG; Lay JO; Beger RD; Freeman JP; Rafii F
    Arch Microbiol; 2000 Dec; 174(6):422-8. PubMed ID: 11195098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. O-desmethylangolensin: the importance of equol's lesser known cousin to human health.
    Frankenfeld CL
    Adv Nutr; 2011 Jul; 2(4):317-24. PubMed ID: 22332073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.