BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 12070917)

  • 1. [The role of non-NMDA receptors in the associative learning process of the honeybee Apis mellifera].
    Lopatina NG; Ryzhkova IV; Chesnokova EG
    Zh Evol Biokhim Fiziol; 2002; 38(2):163-8. PubMed ID: 12070917
    [No Abstract]   [Full Text] [Related]  

  • 2. [Differential involvement of central l-glutamate receptors of non-NMDA subtype in associative training honey bee Apis mellifera. ].
    Lopatina NG; Zachepilo TG; Ryzhova IV; Smirnov VB; Chesnokov EG
    Zh Evol Biokhim Fiziol; 2004; 40(3):220-4. PubMed ID: 15453452
    [No Abstract]   [Full Text] [Related]  

  • 3. [Functional interaction of AMPA and metabotropic L-glutamate receptors in the process of formation of the long-term memory in the honeybee Apis mellifera L].
    Zh Evol Biokhim Fiziol; 2007; 43(4):366-9. PubMed ID: 17933352
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of the maturation of osteoblasts and osteoclastogenesis by glutamate.
    Lin TH; Yang RS; Tang CH; Wu MY; Fu WM
    Eur J Pharmacol; 2008 Jul; 589(1-3):37-44. PubMed ID: 18538763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of spinal glutamatergic receptors to the antinociception caused by agmatine in mice.
    Gadotti VM; Tibola D; Paszcuk AF; Rodrigues AL; Calixto JB; Santos AR
    Brain Res; 2006 Jun; 1093(1):116-22. PubMed ID: 16765330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic NMDA receptor blockade from birth delays the maturation of NMDA currents, but does not affect AMPA/kainate currents.
    Colonnese MT; Shi J; Constantine-Paton M
    J Neurophysiol; 2003 Jan; 89(1):57-68. PubMed ID: 12522159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The respective N-hydroxypyrazole analogues of the classical glutamate receptor ligands ibotenic acid and (RS)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid.
    Clausen RP; Hansen KB; Calí P; Nielsen B; Greenwood JR; Begtrup M; Egebjerg J; Bräuner-Osborne H
    Eur J Pharmacol; 2004 Sep; 499(1-2):35-44. PubMed ID: 15363949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of synaptic strength: subunit expression controls the critical period. Focus on "viral delivery of NR2D subunits reduces Mg2+ block of NMDA receptors and restores NT-3-Induced potentiation of AMPA-kainate responses in maturing rat motoneurons".
    Frank E
    J Neurophysiol; 2004 Oct; 92(4):1971-2. PubMed ID: 15381739
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabotropic glutamate receptors modulate the NMDA- and AMPA-induced gene expression in neocortical interneurons.
    Lindemeyer K; Leemhuis J; Löffler S; Grass N; Nörenberg W; Meyer DK
    Cereb Cortex; 2006 Nov; 16(11):1662-77. PubMed ID: 16407481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [N-Methyl-D-aspartate receptors in the short-term memory development in the honey bee Apis mellifera].
    Lopatina NG; Ryzhova IV; Chesnokova EG; Dmitrieva LA
    Zh Evol Biokhim Fiziol; 2000; 36(3):223-8. PubMed ID: 11075444
    [No Abstract]   [Full Text] [Related]  

  • 11. NMDA and AMPA receptors mediate intracellular calcium increase in rat cortical astrocytes.
    Hu B; Sun SG; Tong ET
    Acta Pharmacol Sin; 2004 Jun; 25(6):714-20. PubMed ID: 15169621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the ionotropic glutamate receptors in the mouse cerebral cortex during development and aging.
    Oja SS; Saransaari P
    Proc West Pharmacol Soc; 2003; 46():51-3. PubMed ID: 14699884
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparative study of action mechanisms of dimebon and memantine on AMPA- and NMDA-subtypes glutamate receptors in rat cerebral neurons.
    Grigorev VV; Dranyi OA; Bachurin SO
    Bull Exp Biol Med; 2003 Nov; 136(5):474-7. PubMed ID: 14968164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic glutamate-induced bursting in the prefrontal cortex: further characterization and effects of phencyclidine.
    Shi WX; Zhang XX
    J Pharmacol Exp Ther; 2003 May; 305(2):680-7. PubMed ID: 12606677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological characterization, localization, and regulation of ionotropic glutamate receptors in skate horizontal cells.
    Kreitzer MA; Birnbaum AD; Qian H; Malchow RP
    Vis Neurosci; 2009; 26(4):375-87. PubMed ID: 19678977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol inhibits alpha-amino-3-hydyroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function in central nervous system neurons by stabilizing desensitization.
    Möykkynen T; Korpi ER; Lovinger DM
    J Pharmacol Exp Ther; 2003 Aug; 306(2):546-55. PubMed ID: 12734392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depressor responses to L-proline microinjected into the rat ventrolateral medulla are mediated by ionotropic excitatory amino acid receptors.
    Takemoto Y
    Auton Neurosci; 2005 Jun; 120(1-2):108-12. PubMed ID: 15964784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMPA and NMDA receptor regulation of firing activity in 5-HT neurons of the dorsal and median raphe nuclei.
    Gartside SE; Cole AJ; Williams AP; McQuade R; Judge SJ
    Eur J Neurosci; 2007 May; 25(10):3001-8. PubMed ID: 17509083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins.
    Elias GM; Nicoll RA
    Trends Cell Biol; 2007 Jul; 17(7):343-52. PubMed ID: 17644382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of glutamate receptors in auditory neurons from long-term organotypic cultures of the embryonic chick hindbrain.
    Diaz C; Martinez-Galan JR; Juiz JM
    Eur J Neurosci; 2009 Jan; 29(2):213-30. PubMed ID: 19200228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.