These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12071305)

  • 1. Increased production of nutriments by genetically engineered crops.
    Sévenier R; van der Meer IM; Bino R; Koops AJ
    J Am Coll Nutr; 2002 Jun; 21(3 Suppl):199S-204S. PubMed ID: 12071305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering fructan metabolism in plants.
    Ritsema T; Smeekens SC
    J Plant Physiol; 2003 Jul; 160(7):811-20. PubMed ID: 12940548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of the fructan biosynthesis pathway of Jerusalem artichoke.
    van der Meer IM; Koops AJ; Hakkert JC; van Tunen AJ
    Plant J; 1998 Aug; 15(4):489-500. PubMed ID: 9753774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotechnological improvement of nutritional and therapeutic value of cultivated potato.
    Bagri DS; Upadhyay DC; Jain SK; Upadhyay CP
    Front Biosci (Schol Ed); 2018 Jan; 10(2):217-228. PubMed ID: 28930528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fructan as a New Carbohydrate Sink in Transgenic Potato Plants.
    Van Der Meer IM; Ebskamp M; Visser R; Weisbeek PJ; Smeekens S
    Plant Cell; 1994 Apr; 6(4):561-570. PubMed ID: 12244248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic modification of plant metabolism for human health benefits.
    Davies KM
    Mutat Res; 2007 Sep; 622(1-2):122-37. PubMed ID: 17382356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots.
    Hellwege EM; Czapla S; Jahnke A; Willmitzer L; Heyer AG
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8699-704. PubMed ID: 10890908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fortifying Horticultural Crops with Essential Amino Acids: A Review.
    Wang G; Xu M; Wang W; Galili G
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High production of plant type levan in sugar beet transformed with timothy (Phleum pratense) 6-SFT genes.
    Matsuhira H; Tamura K; Tamagake H; Sato Y; Anzai H; Yoshida M
    J Biotechnol; 2014 Dec; 192 Pt A():215-22. PubMed ID: 25305472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High level fructan accumulation in a transgenic sugar beet.
    Sévenier R; Hall RD; van der Meer IM; Hakkert HJ; van Tunen AJ; Koops AJ
    Nat Biotechnol; 1998 Sep; 16(9):843-6. PubMed ID: 9743117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of lysine synthesis in transgenic potato plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts.
    Perl A; Shaul O; Galili G
    Plant Mol Biol; 1992 Aug; 19(5):815-23. PubMed ID: 1643284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes.
    Weyens G; Ritsema T; Van Dun K; Meyer D; Lommel M; Lathouwers J; Rosquin I; Denys P; Tossens A; Nijs M; Turk S; Gerrits N; Bink S; Walraven B; Lefèbvre M; Smeekens S
    Plant Biotechnol J; 2004 Jul; 2(4):321-7. PubMed ID: 17134393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants: characterization, cloning, mass mapping and functional analysis of a novel "cell-wall invertase-like" specific 6-FEH from sugar beet (Beta vulgaris L.).
    Van den Ende W; De Coninck B; Clerens S; Vergauwen R; Van Laere A
    Plant J; 2003 Dec; 36(5):697-710. PubMed ID: 14617070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Outcrossing potential between 11 important genetically modified crops and the Chilean vascular flora.
    Sánchez MA; Cid P; Navarrete H; Aguirre C; Chacón G; Salazar E; Prieto H
    Plant Biotechnol J; 2016 Feb; 14(2):625-37. PubMed ID: 26052925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine biofortification of crops to promote sustained human health in the 21st century.
    Yang Q; Zhao D; Zhang C; Sreenivasulu N; Sun SS; Liu Q
    J Exp Bot; 2022 Mar; 73(5):1258-1267. PubMed ID: 34723338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrate profiling in seeds and seedlings of transgenic triticale modified in the expression of sucrose:sucrose-1-fructosyltransferase (1-SST) and sucrose:fructan-6-fructosyltransferase (6-SFT).
    Diedhiou C; Gaudet D; Liang Y; Sun J; Lu ZX; Eudes F; Laroche A
    J Biosci Bioeng; 2012 Oct; 114(4):371-8. PubMed ID: 22698728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality.
    Galili G; Amir R
    Plant Biotechnol J; 2013 Feb; 11(2):211-22. PubMed ID: 23279001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance.
    Kawakami A; Sato Y; Yoshida M
    J Exp Bot; 2008; 59(4):793-802. PubMed ID: 18319240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of transgenic plants in agriculture and biopharming.
    Ahmad P; Ashraf M; Younis M; Hu X; Kumar A; Akram NA; Al-Qurainy F
    Biotechnol Adv; 2012; 30(3):524-40. PubMed ID: 21959304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.