These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. On the accuracy of efficiency of estimating equation approach. Sutradhar BC; Das K Biometrics; 2000 Jun; 56(2):622-5. PubMed ID: 10877326 [TBL] [Abstract][Full Text] [Related]
5. A class of markov models for longitudinal ordinal data. Lee K; Daniels MJ Biometrics; 2007 Dec; 63(4):1060-7. PubMed ID: 18078479 [TBL] [Abstract][Full Text] [Related]
6. Marginalized binary mixed-effects models with covariate-dependent random effects and likelihood inference. Wang Z; Louis TA Biometrics; 2004 Dec; 60(4):884-91. PubMed ID: 15606408 [TBL] [Abstract][Full Text] [Related]
7. Marginalized transition shared random effects models for longitudinal binary data with nonignorable dropout. Lee M; Lee K; Lee J Biom J; 2014 Mar; 56(2):230-42. PubMed ID: 24430985 [TBL] [Abstract][Full Text] [Related]
8. Robustness of the latent variable model for correlated binary data. Tan M; Qu Y; Rao JS Biometrics; 1999 Mar; 55(1):258-63. PubMed ID: 11318164 [TBL] [Abstract][Full Text] [Related]
9. Bayesian semiparametric regression for longitudinal binary processes with missing data. Su L; Hogan JW Stat Med; 2008 Jul; 27(17):3247-68. PubMed ID: 18351709 [TBL] [Abstract][Full Text] [Related]
10. Variable selection for marginal longitudinal generalized linear models. Cantoni E; Flemming JM; Ronchetti E Biometrics; 2005 Jun; 61(2):507-14. PubMed ID: 16011698 [TBL] [Abstract][Full Text] [Related]
11. Generalized estimating equations for ordinal data: a note on working correlation structures. Lumley T Biometrics; 1996 Mar; 52(1):354-61. PubMed ID: 8934602 [TBL] [Abstract][Full Text] [Related]
12. Marginalized random effects models for multivariate longitudinal binary data. Lee K; Joo Y; Yoo JK; Lee J Stat Med; 2009 Apr; 28(8):1284-300. PubMed ID: 19156673 [TBL] [Abstract][Full Text] [Related]
13. A note on fitting a marginal model to mixed effects log-linear regression data via GEE. Grömping U Biometrics; 1996 Mar; 52(1):280-5. PubMed ID: 8934596 [TBL] [Abstract][Full Text] [Related]
15. The analysis of longitudinal polytomous data: generalized estimating equations and connections with weighted least squares. Miller ME; Davis CS; Landis JR Biometrics; 1993 Dec; 49(4):1033-44. PubMed ID: 8117899 [TBL] [Abstract][Full Text] [Related]
16. Obtaining marginal estimates from conditional categorical repeated measurements models with missing data. Lindsey JK Stat Med; 2000 Mar; 19(6):801-9. PubMed ID: 10734284 [TBL] [Abstract][Full Text] [Related]
17. A comparison of the generalized estimating equation approach with the maximum likelihood approach for repeated measurements. Park T Stat Med; 1993 Sep; 12(18):1723-32. PubMed ID: 8248664 [TBL] [Abstract][Full Text] [Related]
18. The interpretation of a regression coefficient. Galbraith JI Biometrics; 1991 Dec; 47(4):1593-5; discussion 1595-6. PubMed ID: 1786332 [TBL] [Abstract][Full Text] [Related]
19. Markov neighborhood regression for statistical inference of high-dimensional generalized linear models. Sun L; Liang F Stat Med; 2022 Sep; 41(20):4057-4078. PubMed ID: 35688606 [TBL] [Abstract][Full Text] [Related]
20. Some covariance models for longitudinal count data with overdispersion. Thall PF; Vail SC Biometrics; 1990 Sep; 46(3):657-71. PubMed ID: 2242408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]