BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12071715)

  • 41. Kinetic characterization of recombinant human cystathionine beta-synthase purified from E. coli.
    Belew MS; Quazi FI; Willmore WG; Aitken SM
    Protein Expr Purif; 2009 Apr; 64(2):139-45. PubMed ID: 19010420
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of an essential cysteine in the reaction catalyzed by aspartate-beta-semialdehyde dehydrogenase from Escherichia coli.
    Karsten WE; Viola RE
    Biochim Biophys Acta; 1992 May; 1121(1-2):234-8. PubMed ID: 1350921
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Active site analysis of the potential antimicrobial target aspartate semialdehyde dehydrogenase.
    Hadfield A; Shammas C; Kryger G; Ringe D; Petsko GA; Ouyang J; Viola RE
    Biochemistry; 2001 Dec; 40(48):14475-83. PubMed ID: 11724560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of the structure and regulation of the udp gene of Vibrio cholerae, Yersinia pseudotuberculosis, Salmonella typhimurium, and Escherichia coli.
    Zolotukhina M; Ovcharova I; Eremina S; Errais Lopes L; Mironov AS
    Res Microbiol; 2003 Sep; 154(7):510-20. PubMed ID: 14499937
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fully automated protein purification.
    Camper DV; Viola RE
    Anal Biochem; 2009 Oct; 393(2):176-81. PubMed ID: 19595984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the gene for the monomeric alkaline phosphatase of Vibrio cholerae serogroup O1 strain.
    Majumdar A; Ghatak A; Ghosh RK
    Gene; 2005 Jan; 344():251-8. PubMed ID: 15656991
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of bla(IMP-22) in Pseudomonas spp. in urban wastewater and nosocomial environments: biochemical characterization of a new IMP metallo-enzyme variant and its genetic location.
    Pellegrini C; Mercuri PS; Celenza G; Galleni M; Segatore B; Sacchetti E; Volpe R; Amicosante G; Perilli M
    J Antimicrob Chemother; 2009 May; 63(5):901-8. PubMed ID: 19270313
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystal structure and kinetic study of dihydrodipicolinate synthase from Mycobacterium tuberculosis.
    Kefala G; Evans GL; Griffin MD; Devenish SR; Pearce FG; Perugini MA; Gerrard JA; Weiss MS; Dobson RC
    Biochem J; 2008 Apr; 411(2):351-60. PubMed ID: 18062777
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relationship between intron 4b splicing of the rat geranylgeranyl diphosphate synthase gene and the active enzyme expression level.
    Matsumura Y; Kuzuguchi T; Sagami H
    J Biochem; 2004 Sep; 136(3):301-12. PubMed ID: 15598886
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Amino acid production by microorganisms. Control of biosynthesis of asparaginic amino acid and production of L-lysine].
    Nakayama K
    Tanpakushitsu Kakusan Koso; 1968 Sep; 13(10):876-90. PubMed ID: 4387467
    [No Abstract]   [Full Text] [Related]  

  • 51. Comparative studies of endonuclease I from cold-adapted Vibrio salmonicida and mesophilic Vibrio cholerae.
    Altermark B; Niiranen L; Willassen NP; Smalås AO; Moe E
    FEBS J; 2007 Jan; 274(1):252-63. PubMed ID: 17222185
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aspartate-beta-semialdehyde dehydrogenase from Escherichia coli. Affinity labeling with the substrate analogue L-2-amino-4-oxo-5-chloropentanoic acid: an example of half-site reactivity.
    Biellmann JF; Eid P; Hirth C; Jörnvall H
    Eur J Biochem; 1980 Feb; 104(1):59-64. PubMed ID: 6102910
    [TBL] [Abstract][Full Text] [Related]  

  • 53. L-Lysine biosynthetic pathway of Methylophilus methylotrophus and construction of an L-lysine producer.
    Tsujimoto N; Gunji Y; Ogawa-Miyata Y; Shimaoka M; Yasueda H
    J Biotechnol; 2006 Jul; 124(2):327-37. PubMed ID: 16483680
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning, characterization and expression of escapin, a broadly antimicrobial FAD-containing L-amino acid oxidase from ink of the sea hare Aplysia californica.
    Yang H; Johnson PM; Ko KC; Kamio M; Germann MW; Derby CD; Tai PC
    J Exp Biol; 2005 Sep; 208(Pt 18):3609-22. PubMed ID: 16155232
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene.
    Das B; Pal RR; Bag S; Bhadra RK
    Mol Microbiol; 2009 Apr; 72(2):380-98. PubMed ID: 19298370
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure of a fungal form of aspartate semialdehyde dehydrogenase from Cryptococcus neoformans.
    Dahal G; Viola RE
    Acta Crystallogr F Struct Biol Commun; 2015 Nov; 71(Pt 11):1365-71. PubMed ID: 26527262
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Control of the metabolic pathway of threonine in E coli. Application of biotechnology].
    Raïs B; Mazat JP
    Acta Biotheor; 1995 Jun; 43(1-2):143-53. PubMed ID: 7709683
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural characterization of inhibitors with selectivity against members of a homologous enzyme family.
    Pavlovsky AG; Liu X; Faehnle CR; Potente N; Viola RE
    Chem Biol Drug Des; 2012 Jan; 79(1):128-36. PubMed ID: 22039970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors.
    Thangavelu B; Bhansali P; Viola RE
    Bioorg Med Chem; 2015 Oct; 23(20):6622-31. PubMed ID: 26404410
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular docking and enzymatic evaluation to identify selective inhibitors of aspartate semialdehyde dehydrogenase.
    Luniwal A; Wang L; Pavlovsky A; Erhardt PW; Viola RE
    Bioorg Med Chem; 2012 May; 20(9):2950-6. PubMed ID: 22464683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.