These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12071952)

  • 1. Potential active-site residues in polyneuridine aldehyde esterase, a central enzyme of indole alkaloid biosynthesis, by modelling and site-directed mutagenesis.
    Mattern-Dogru E; Ma X; Hartmann J; Decker H; Stöckigt J
    Eur J Biochem; 2002 Jun; 269(12):2889-96. PubMed ID: 12071952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The gene encoding polyneuridine aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of the alpha/betahydrolase super family.
    Dogru E; Warzecha H; Seibel F; Haebel S; Lottspeich F; Stöckigt J
    Eur J Biochem; 2000 Mar; 267(5):1397-406. PubMed ID: 10691977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxynitrile lyase from Hevea brasiliensis: molecular characterization and mechanism of enzyme catalysis.
    Hasslacher M; Kratky C; Griengl H; Schwab H; Kohlwein SD
    Proteins; 1997 Mar; 27(3):438-49. PubMed ID: 9094745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis and enzymatic mechanism of the biosynthesis of C9- from C10-monoterpenoid indole alkaloids.
    Yang L; Hill M; Wang M; Panjikar S; Stöckigt J
    Angew Chem Int Ed Engl; 2009; 48(28):5211-3. PubMed ID: 19496101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. R-hydroxynitrile lyase from the cyanogenic millipede, Chamberlinius hualienensis-A new entry to the carrier protein family Lipocalines.
    Motojima F; Izumi A; Nuylert A; Zhai Z; Dadashipour M; Shichida S; Yamaguchi T; Nakano S; Asano Y
    FEBS J; 2021 Mar; 288(5):1679-1695. PubMed ID: 32679618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the reaction rate of hydroxynitrile lyase from Hevea brasiliensis toward mandelonitrile by copying active site residues from an esterase that accepts aromatic esters.
    von Langermann J; Nedrud DM; Kazlauskas RJ
    Chembiochem; 2014 Sep; 15(13):1931-8. PubMed ID: 25044660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetyltransfer in natural product biosynthesis--functional cloning and molecular analysis of vinorine synthase.
    Bayer A; Ma X; Stöckigt J
    Bioorg Med Chem; 2004 May; 12(10):2787-95. PubMed ID: 15110860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family.
    Barleben L; Panjikar S; Ruppert M; Koepke J; Stöckigt J
    Plant Cell; 2007 Sep; 19(9):2886-97. PubMed ID: 17890378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate binding in the FAD-dependent hydroxynitrile lyase from almond provides insight into the mechanism of cyanohydrin formation and explains the absence of dehydrogenation activity.
    Dreveny I; Andryushkova AS; Glieder A; Gruber K; Kratky C
    Biochemistry; 2009 Apr; 48(15):3370-7. PubMed ID: 19256550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larger active site in an ancestral hydroxynitrile lyase increases catalytically promiscuous esterase activity.
    Jones BJ; Evans RL; Mylrea NJ; Chaudhury D; Luo C; Guan B; Pierce CT; Gordon WR; Wilmot CM; Kazlauskas RJ
    PLoS One; 2020; 15(6):e0235341. PubMed ID: 32603354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of potential active-site residues in the hydroxynitrile lyase from Manihot esculenta by site-directed mutagenesis.
    Wajant H; Pfizenmaier K
    J Biol Chem; 1996 Oct; 271(42):25830-4. PubMed ID: 8824213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction mechanism of hydroxynitrile lyases of the alpha/beta-hydrolase superfamily: the three-dimensional structure of the transient enzyme-substrate complex certifies the crucial role of LYS236.
    Gruber K; Gartler G; Krammer B; Schwab H; Kratky C
    J Biol Chem; 2004 May; 279(19):20501-10. PubMed ID: 14998991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uneven twins: comparison of two enantiocomplementary hydroxynitrile lyases with alpha/beta-hydrolase fold.
    Guterl JK; Andexer JN; Sehl T; von Langermann J; Frindi-Wosch I; Rosenkranz T; Fitter J; Gruber K; Kragl U; Eggert T; Pohl M
    J Biotechnol; 2009 May; 141(3-4):166-73. PubMed ID: 19433222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxynitrile lyases with α/β-hydrolase fold: two enzymes with almost identical 3D structures but opposite enantioselectivities and different reaction mechanisms.
    Andexer JN; Staunig N; Eggert T; Kratky C; Pohl M; Gruber K
    Chembiochem; 2012 Sep; 13(13):1932-9. PubMed ID: 22851196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and structural characterization of a novel bacterial manganese-dependent hydroxynitrile lyase.
    Hajnal I; Lyskowski A; Hanefeld U; Gruber K; Schwab H; Steiner K
    FEBS J; 2013 Nov; 280(22):5815-28. PubMed ID: 23981508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching from an esterase to a hydroxynitrile lyase mechanism requires only two amino acid substitutions.
    Padhi SK; Fujii R; Legatt GA; Fossum SL; Berchtold R; Kazlauskas RJ
    Chem Biol; 2010 Aug; 17(8):863-71. PubMed ID: 20797615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-Based Site-Directed Mutagenesis of Hydroxynitrile Lyase from Cyanogenic Millipede, Oxidus gracilis for Hydrocyanation and Henry Reactions.
    Chaikaew S; Watanabe Y; Zheng D; Motojima F; Yamaguchi T; Asano Y
    Chembiochem; 2024 Jun; 25(11):e202400118. PubMed ID: 38526556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert
    Nedrud DM; Lin H; Lopez G; Padhi SK; Legatt GA; Kaz-Lauskas RJ
    Chem Sci; 2014 Nov; 5(11):4265-4277. PubMed ID: 25346843
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of polyneuridine aldehyde esterase, a key enzyme in the biosynthesis of sarpagine/ajmaline type alkaloids.
    Pfitzner A; Stöckigt J
    Planta Med; 1983 Aug; 48(8):221-7. PubMed ID: 17404987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.