These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 12071955)
1. Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Christiaens B; Symoens S; Verheyden S; Engelborghs Y; Joliot A; Prochiantz A; Vandekerckhove J; Rosseneu M; Vanloo B Eur J Biochem; 2002 Jun; 269(12):2918-26. PubMed ID: 12071955 [TBL] [Abstract][Full Text] [Related]
2. Membrane interaction and cellular internalization of penetratin peptides. Christiaens B; Grooten J; Reusens M; Joliot A; Goethals M; Vandekerckhove J; Prochiantz A; Rosseneu M Eur J Biochem; 2004 Mar; 271(6):1187-97. PubMed ID: 15009197 [TBL] [Abstract][Full Text] [Related]
3. Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR. Lindberg M; Biverståhl H; Gräslund A; Mäler L Eur J Biochem; 2003 Jul; 270(14):3055-63. PubMed ID: 12846839 [TBL] [Abstract][Full Text] [Related]
4. Membrane interactions of cell-penetrating peptides probed by tryptophan fluorescence and dichroism techniques: correlations of structure to cellular uptake. Caesar CE; Esbjörner EK; Lincoln P; Nordén B Biochemistry; 2006 Jun; 45(24):7682-92. PubMed ID: 16768464 [TBL] [Abstract][Full Text] [Related]
5. Anionic phospholipids modulate peptide insertion into membranes. Liu LP; Deber CM Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930 [TBL] [Abstract][Full Text] [Related]
6. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886 [TBL] [Abstract][Full Text] [Related]
7. Conformational states of the cell-penetrating peptide penetratin when interacting with phospholipid vesicles: effects of surface charge and peptide concentration. Magzoub M; Eriksson LE; Gräslund A Biochim Biophys Acta; 2002 Jun; 1563(1-2):53-63. PubMed ID: 12007625 [TBL] [Abstract][Full Text] [Related]
8. Membrane binding and translocation of cell-penetrating peptides. Thorén PE; Persson D; Esbjörner EK; Goksör M; Lincoln P; Nordén B Biochemistry; 2004 Mar; 43(12):3471-89. PubMed ID: 15035618 [TBL] [Abstract][Full Text] [Related]
9. Tryptophan fluorescence study on the interaction of the signal peptide of the Escherichia coli outer membrane protein PhoE with model membranes. Killian JA; Keller RC; Struyvé M; de Kroon AI; Tommassen J; de Kruijff B Biochemistry; 1990 Sep; 29(35):8131-7. PubMed ID: 2175648 [TBL] [Abstract][Full Text] [Related]
10. Penetratin-membrane association: W48/R52/W56 shield the peptide from the aqueous phase. Lensink MF; Christiaens B; Vandekerckhove J; Prochiantz A; Rosseneu M Biophys J; 2005 Feb; 88(2):939-52. PubMed ID: 15542560 [TBL] [Abstract][Full Text] [Related]
11. Designing transmembrane alpha-helices that insert spontaneously. Wimley WC; White SH Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993 [TBL] [Abstract][Full Text] [Related]
12. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes. Mishra VK; Palgunachari MN Biochemistry; 1996 Aug; 35(34):11210-20. PubMed ID: 8780526 [TBL] [Abstract][Full Text] [Related]
13. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers. Raja MM; Kinne RK Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736 [TBL] [Abstract][Full Text] [Related]
14. Distinct behaviour of the homeodomain derived cell penetrating peptide penetratin in interaction with different phospholipids. Maniti O; Alves I; Trugnan G; Ayala-Sanmartin J PLoS One; 2010 Dec; 5(12):e15819. PubMed ID: 21209890 [TBL] [Abstract][Full Text] [Related]
16. The sterol carrier protein-2 amino terminus: a membrane interaction domain. Huang H; Ball JM; Billheimer JT; Schroeder F Biochemistry; 1999 Oct; 38(40):13231-43. PubMed ID: 10529196 [TBL] [Abstract][Full Text] [Related]
17. Bilayer interaction and localization of cell penetrating peptides with model membranes: a comparative study of a human calcitonin (hCT)-derived peptide with pVEC and pAntp(43-58). Herbig ME; Fromm U; Leuenberger J; Krauss U; Beck-Sickinger AG; Merkle HP Biochim Biophys Acta; 2005 Jun; 1712(2):197-211. PubMed ID: 15919050 [TBL] [Abstract][Full Text] [Related]
18. Contribution of the hydrophobicity gradient of an amphipathic peptide to its mode of association with lipids. Pérez-Méndez O; Vanloo B; Decout A; Goethals M; Peelman F; Vandekerckhove J; Brasseur R; Rosseneu M Eur J Biochem; 1998 Sep; 256(3):570-9. PubMed ID: 9780233 [TBL] [Abstract][Full Text] [Related]
19. Application of a novel analysis to measure the binding of the membrane-translocating peptide penetratin to negatively charged liposomes. Persson D; Thorén PE; Herner M; Lincoln P; Nordén B Biochemistry; 2003 Jan; 42(2):421-9. PubMed ID: 12525169 [TBL] [Abstract][Full Text] [Related]
20. The structure and orientation of class-A amphipathic peptides on a phospholipid bilayer surface. Clayton AH; Sawyer WH Eur Biophys J; 1999; 28(2):133-41. PubMed ID: 10028238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]