BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 120728)

  • 1. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum.
    Schönheit P; Moll J; Thauer RK
    Arch Microbiol; 1979 Oct; 123(1):105-7. PubMed ID: 120728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum.
    Eikmanns B; Fuchs G; Thauer RK
    Eur J Biochem; 1985 Jan; 146(1):149-54. PubMed ID: 3917916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetate thiokinase and the assimilation of acetate in methanobacterium thermoautotrophicum.
    Oberlies G; Fuchs G; Thauer RK
    Arch Microbiol; 1980 Dec; 128(2):248-52. PubMed ID: 6111300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.
    Krueger RD; Harper SH; Campbell JW; Fahrney DE
    J Bacteriol; 1986 Jul; 167(1):49-56. PubMed ID: 3722128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane.
    Schönheit P; Beimborn DB
    Eur J Biochem; 1985 May; 148(3):545-50. PubMed ID: 2986965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elemental metals as electron sources for biological methane formation from CO2.
    Belay N; Daniels L
    Antonie Van Leeuwenhoek; 1990 Jan; 57(1):1-7. PubMed ID: 2115317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide.
    Länge S; Fuchs G
    Eur J Biochem; 1987 Feb; 163(1):147-54. PubMed ID: 3102234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum.
    Diekert G; Klee B; Thauer RK
    Arch Microbiol; 1980 Jan; 124(1):103-6. PubMed ID: 7377902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formate auxotroph of Methanobacterium thermoautotrophicum Marburg.
    Tanner RS; McInerney MJ; Nagle DP
    J Bacteriol; 1989 Dec; 171(12):6534-8. PubMed ID: 2687241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of formate in Methanobacterium formicicum.
    Schauer NL; Ferry JG
    J Bacteriol; 1980 Jun; 142(3):800-7. PubMed ID: 6769911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uroporphyrinogen III, an intermediate in the biosynthesis of the nickel-containing factor F430 in Methanobacterium thermoautotrophicum.
    Gilles H; Thauer RK
    Eur J Biochem; 1983 Sep; 135(1):109-12. PubMed ID: 6884352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution of Co alpha-(5-hydroxybenzimidazolyl)cobamide (factor III) by vitamin B12 in Methanobacterium thermoautotrophicum.
    Stupperich E; Steiner I; Eisinger HJ
    J Bacteriol; 1987 Jul; 169(7):3076-81. PubMed ID: 3597318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of 8 succinate per mol nickel into factors F430 by Methanobacterium thermoautotrophicum.
    Diekert G; Gilles HH; Jaenchen R; Thauer RK
    Arch Microbiol; 1980 Dec; 128(2):256-62. PubMed ID: 7212929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum.
    Fuchs G; Stupperich E
    Arch Microbiol; 1978 Jul; 118(1):121-5. PubMed ID: 29586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria.
    Bott M; Thauer RK
    Eur J Biochem; 1987 Oct; 168(2):407-12. PubMed ID: 2822415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen consumption by methanogens on the early Earth.
    Kral TA; Brink KM; Miller SL; McKay CP
    Orig Life Evol Biosph; 1998 Jun; 28(3):311-9. PubMed ID: 9611769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrition and factors limiting the growth of a methanogenic bacterium (Methanobacterium thermoautotrophicum).
    Taylor GT; Pirt SJ
    Arch Microbiol; 1977 May; 113(1-2):17-22. PubMed ID: 889384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens.
    Winter JU; Wolfe RS
    Arch Microbiol; 1980 Jan; 124(1):73-9. PubMed ID: 6769417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials. An explanation for the apparent uncoupler insensitivity of ATP synthesis.
    Kaesler B; Schönheit P
    Eur J Biochem; 1988 May; 174(1):189-97. PubMed ID: 2897291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation.
    Seely RJ; Fahrney DE
    J Bacteriol; 1984 Oct; 160(1):50-4. PubMed ID: 6480564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.