These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 120729)
21. Ultrastructural studies of sporulation in a conditionally temperature-sensitive ribonucleic acid polymerase mutant of Bacillus subtilis. Santo L; Leighton TJ; Doi RH J Bacteriol; 1973 Aug; 115(2):703-6. PubMed ID: 4199138 [TBL] [Abstract][Full Text] [Related]
22. Requirement of deoxyribonucleic acid synthesis for microcycle sporulation in Bacillus megaterium. Mychajlonka M; Slepecky RA J Bacteriol; 1974 Dec; 120(3):1331-8. PubMed ID: 4215798 [TBL] [Abstract][Full Text] [Related]
23. Formation of competent Bacillus subtilis cells. Sadaie Y; Kada T J Bacteriol; 1983 Feb; 153(2):813-21. PubMed ID: 6185466 [TBL] [Abstract][Full Text] [Related]
24. Development of bacteriophage phi29 in sporulating and non-sporulating cells of bacillus subtilis 168. Moreno F Ann Microbiol (Paris); 1977 Jul; 128B(1):3-18. PubMed ID: 410338 [TBL] [Abstract][Full Text] [Related]
25. Functional requirements of cellular differentiation: lessons from Bacillus subtilis. Narula J; Fujita M; Igoshin OA Curr Opin Microbiol; 2016 Dec; 34():38-46. PubMed ID: 27501460 [TBL] [Abstract][Full Text] [Related]
26. Characterization of cell cycle events during the onset of sporulation in Bacillus subtilis. Hauser PM; Errington J J Bacteriol; 1995 Jul; 177(14):3923-31. PubMed ID: 7608062 [TBL] [Abstract][Full Text] [Related]
27. Initiation of antibiotic production by the stringent response of Bacillus subtilis Marburg. Ochi K; Ohsawa S J Gen Microbiol; 1984 Oct; 130(10):2473-82. PubMed ID: 6439818 [TBL] [Abstract][Full Text] [Related]
28. Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. Kok J; Trach KA; Hoch JA J Bacteriol; 1994 Dec; 176(23):7155-60. PubMed ID: 7961486 [TBL] [Abstract][Full Text] [Related]
29. Temperature-sensitive sporulation caused by a mutation in the Bacillus subtilis secY gene. Yoshikawa H; Jeong SM; Hirata A; Kawamura F; Doi RH; Takahashi H J Bacteriol; 1993 Jun; 175(11):3656-60. PubMed ID: 8501070 [TBL] [Abstract][Full Text] [Related]
30. Repression of sporulation in Bacillus subtilis by L-malate. Ohné M; Rutberg B J Bacteriol; 1976 Feb; 125(2):453-60. PubMed ID: 812866 [TBL] [Abstract][Full Text] [Related]
31. Isolation and characterization of fusidic acid-resistant, sporulation-defective mutants of Bacillus subtilis. Kobayashi H; Kobayashi K; Kobayashi Y J Bacteriol; 1977 Oct; 132(1):262-9. PubMed ID: 410781 [TBL] [Abstract][Full Text] [Related]
32. Characterization of a temperature-sensitive mutant of Bacillus subtilis defective in deoxyribonucleic acid replication. Mendelson NH; Gross JD J Bacteriol; 1967 Nov; 94(5):1603-8. PubMed ID: 4964484 [TBL] [Abstract][Full Text] [Related]
33. Sporulation-specific expression of the yvgW (cadA) gene and the effect of blockage on spore properties in Bacillus subtilis. Irigül O; Yazgan-Karataş A Gene; 2006 Nov; 382():71-8. PubMed ID: 16901659 [TBL] [Abstract][Full Text] [Related]
34. Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1. Gauvry E; Mathot AG; Couvert O; Leguérinel I; Coroller L Int J Food Microbiol; 2021 Jan; 337():108915. PubMed ID: 33152569 [TBL] [Abstract][Full Text] [Related]
35. Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure. Nguyen Thi Minh H; Durand A; Loison P; Perrier-Cornet JM; Gervais P Appl Microbiol Biotechnol; 2011 May; 90(4):1409-17. PubMed ID: 21380515 [TBL] [Abstract][Full Text] [Related]
36. Achievement of complete Bacillus subtilis microcycle sporulation by the addition of S-adenosylmethionine and phospholipids. Petridou S; Slepecky RA Biochimie; 1992; 74(7-8):749-54. PubMed ID: 1391054 [TBL] [Abstract][Full Text] [Related]
37. Activation of the Bacillus subtilis hut operon at the onset of stationary growth phase in nutrient sporulation medium results primarily from the relief of amino acid repression of histidine transport. Atkinson MR; Wray LV; Fisher SH J Bacteriol; 1993 Jul; 175(14):4282-9. PubMed ID: 7687247 [TBL] [Abstract][Full Text] [Related]
38. Effects on growth and sporulation of inactivation of a Bacillus subtilis gene (ctc) transcribed in vitro by minor vegetative cell RNA polymerases (E-sigma 37, E-sigma 32). Truitt CL; Weaver EA; Haldenwang WG Mol Gen Genet; 1988 Apr; 212(1):166-71. PubMed ID: 2836704 [TBL] [Abstract][Full Text] [Related]
39. Physiological suppression of Bacillus subtilis conditioned sporulation phenotypes: RNA polymerase and ribosomal mutations. Wayne RR; Leighton T Mol Gen Genet; 1981; 183(3):550-2. PubMed ID: 6801430 [TBL] [Abstract][Full Text] [Related]
40. Transcription from complementary deoxyribonucleic acid strands in various sporogenic and asporogenic mutants of Bacillus subtilis. Hybridization-competition studies on ribonucleic acid synthesized in vivo by a thermosensitive sporulation mutant (ts-4). Bonamy C; Manca de Nadra MC; Szulmajster J Eur J Biochem; 1976 Mar; 63(1):53-63. PubMed ID: 816651 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]