These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 12073135)
1. 2-Amino-3-carboxy-1,4-naphthoquinone affects the end-product profile of bifidobacteria through the mediated oxidation of NAD(P)H. Yamazaki S; Kaneko T; Taketomo N; Kano K; Ikeda T Appl Microbiol Biotechnol; 2002 Jun; 59(1):72-8. PubMed ID: 12073135 [TBL] [Abstract][Full Text] [Related]
2. Role of 2-amino-3-carboxy-1,4-naphthoquinone, a strong growth stimulator for bifidobacteria, as an electron transfer mediator for NAD(P)(+) regeneration in Bifidobacterium longum. Yamazaki S; Kano K; Ikeda T; Isawa K; Kaneko T Biochim Biophys Acta; 1999 Aug; 1428(2-3):241-50. PubMed ID: 10434042 [TBL] [Abstract][Full Text] [Related]
3. Glucose metabolism of lactic acid bacteria changed by quinone-mediated extracellular electron transfer. Yamazaki S; Kaneko T; Taketomo N; Kano K; Ikeda T Biosci Biotechnol Biochem; 2002 Oct; 66(10):2100-6. PubMed ID: 12450120 [TBL] [Abstract][Full Text] [Related]
5. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. Shimamura S; Abe F; Ishibashi N; Miyakawa H; Yaeshima T; Araya T; Tomita M J Dairy Sci; 1992 Dec; 75(12):3296-306. PubMed ID: 1474198 [TBL] [Abstract][Full Text] [Related]
6. Ascorbate regeneration by the reduced form of 2-amino-3-carboxy-1, 4-naphthoquinone, a strong growth stimulator for bifidobacteria. Yamazaki S; Iwasa K; Kano K; Ikeda T; Taketomo N; Kaneko T J Agric Food Chem; 2000 Nov; 48(11):5643-8. PubMed ID: 11087532 [TBL] [Abstract][Full Text] [Related]
7. Effect of ascorbate on the DT-diaphorase-mediated redox cycling of 2-methyl-1,4-naphthoquinone. Jarabak R; Jarabak J Arch Biochem Biophys; 1995 Apr; 318(2):418-23. PubMed ID: 7733672 [TBL] [Abstract][Full Text] [Related]
8. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris. Liu YJ; Norberg FE; Szilágyi A; De Paepe R; Akerlund HE; Rasmusson AG Plant Cell Physiol; 2008 Feb; 49(2):251-63. PubMed ID: 18182402 [TBL] [Abstract][Full Text] [Related]
9. Effects of hyperoxia on oxidized and reduced NAD and NADP concentrations in Escherichia coli. Brunker RL; Brown OR Microbios; 1971 Dec; 4(15):193-203. PubMed ID: 4147907 [No Abstract] [Full Text] [Related]
10. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site. Cénas N; Lê KH; Terrier M; Lederer F Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777 [TBL] [Abstract][Full Text] [Related]
11. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
12. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes. Ogasawara Y; Funakoshi M; Ishii K Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836 [TBL] [Abstract][Full Text] [Related]
14. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Canelas AB; van Gulik WM; Heijnen JJ Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140 [TBL] [Abstract][Full Text] [Related]
15. Enhanced oxidation of NAD(P)H by oxidants in the presence of dehydrogenases but no evidence for a superoxide-propagated chain oxidation of the bound coenzymes. Petrat F; Bramey T; Kirsch M; Kerkweg U; De Groot H Free Radic Res; 2006 Aug; 40(8):857-63. PubMed ID: 17015264 [TBL] [Abstract][Full Text] [Related]
16. Bias from H2 cleavage to production and coordination changes at the Ni-Fe active site in the NAD+-reducing hydrogenase from Ralstonia eutropha. Löscher S; Burgdorf T; Zebger I; Hildebrandt P; Dau H; Friedrich B; Haumann M Biochemistry; 2006 Sep; 45(38):11658-65. PubMed ID: 16981725 [TBL] [Abstract][Full Text] [Related]
17. Initiation of a superoxide-dependent chain oxidation of lactate dehydrogenase-bound NADH by oxidants of low and high reactivity. Petrat F; Bramey T; Kirsch M; De Groot H Free Radic Res; 2005 Oct; 39(10):1043-57. PubMed ID: 16298730 [TBL] [Abstract][Full Text] [Related]
18. [Effect of osmoregulation on the plasma membrane redox activity in chilling injury sensitive soybean seeds]. Yang YQ; Wang XF; Wang SH Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Oct; 30(5):589-94. PubMed ID: 15627715 [TBL] [Abstract][Full Text] [Related]
19. Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Richter H; Hamann I; Unden G Arch Microbiol; 2003 Apr; 179(4):227-33. PubMed ID: 12677361 [TBL] [Abstract][Full Text] [Related]
20. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]