These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 12073317)
1. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Reid RJ; Lisby M; Rothstein R Methods Enzymol; 2002; 350():258-77. PubMed ID: 12073317 [TBL] [Abstract][Full Text] [Related]
2. PCR- and ligation-mediated synthesis of marker cassettes with long flanking homology regions for gene disruption in Saccharomyces cerevisiae. Nikawa J; Kawabata M Nucleic Acids Res; 1998 Feb; 26(3):860-1. PubMed ID: 9443982 [TBL] [Abstract][Full Text] [Related]
3. Manipulating the yeast genome: deletion, mutation, and tagging by PCR. Gardner JM; Jaspersen SL Methods Mol Biol; 2014; 1205():45-78. PubMed ID: 25213239 [TBL] [Abstract][Full Text] [Related]
5. A method for performing precise alterations in the yeast genome using a recycable selectable marker. Längle-Rouault F; Jacobs E Nucleic Acids Res; 1995 Aug; 23(15):3079-81. PubMed ID: 7659536 [No Abstract] [Full Text] [Related]
6. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Wach A Yeast; 1996 Mar; 12(3):259-65. PubMed ID: 8904338 [TBL] [Abstract][Full Text] [Related]
8. Gene knockouts, in vivo site-directed mutagenesis and other modifications using the delitto perfetto system in Saccharomyces cerevisiae. Stuckey S; Storici F Methods Enzymol; 2013; 533():103-31. PubMed ID: 24182920 [TBL] [Abstract][Full Text] [Related]
11. Generation of disruption cassettes in vivo using a PCR product and Saccharomyces cerevisiae. Zaragoza O J Microbiol Methods; 2003 Jan; 52(1):141-5. PubMed ID: 12401237 [TBL] [Abstract][Full Text] [Related]
12. LA-PCR-based quick method for the identification of genes responsible for the complementation of Saccharomyces cerevisiae mutations. Ohya Y Biotechniques; 1996 May; 20(5):772-4, 778. PubMed ID: 8723914 [No Abstract] [Full Text] [Related]
14. Polishing the craft of genetic diversity creation in directed evolution. Tee KL; Wong TS Biotechnol Adv; 2013 Dec; 31(8):1707-21. PubMed ID: 24012599 [TBL] [Abstract][Full Text] [Related]
15. The complete set of predicted genes from Saccharomyces cerevisiae in a readily usable form. Hudson JR; Dawson EP; Rushing KL; Jackson CH; Lockshon D; Conover D; Lanciault C; Harris JR; Simmons SJ; Rothstein R; Fields S Genome Res; 1997 Dec; 7(12):1169-73. PubMed ID: 9414322 [TBL] [Abstract][Full Text] [Related]
16. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Oldenburg KR; Vo KT; Michaelis S; Paddon C Nucleic Acids Res; 1997 Jan; 25(2):451-2. PubMed ID: 9016579 [TBL] [Abstract][Full Text] [Related]
17. PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Kuwayama H; Obara S; Morio T; Katoh M; Urushihara H; Tanaka Y Nucleic Acids Res; 2002 Jan; 30(2):E2. PubMed ID: 11788728 [TBL] [Abstract][Full Text] [Related]
18. Directional ligation of long-flanking homology regions to selection cassettes for efficient targeted gene-disruption in Candida albicans. Taneja V; Paul S; Ganesan K FEMS Yeast Res; 2004 Sep; 4(8):841-7. PubMed ID: 15450191 [TBL] [Abstract][Full Text] [Related]
19. A two-step method for the introduction of single or multiple defined point mutations into the genome of Saccharomyces cerevisiae. Toulmay A; Schneiter R Yeast; 2006 Aug; 23(11):825-31. PubMed ID: 16921548 [TBL] [Abstract][Full Text] [Related]
20. The 50:50 method for PCR-based seamless genome editing in yeast. Horecka J; Davis RW Yeast; 2014 Mar; 31(3):103-12. PubMed ID: 24639370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]