BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 12073652)

  • 21. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium.
    Imlay JA
    Nat Rev Microbiol; 2013 Jul; 11(7):443-54. PubMed ID: 23712352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular defenses against superoxide and hydrogen peroxide.
    Imlay JA
    Annu Rev Biochem; 2008; 77():755-76. PubMed ID: 18173371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The vulnerability of radical SAM enzymes to oxidants and soft metals.
    Rohaun SK; Imlay JA
    Redox Biol; 2022 Nov; 57():102495. PubMed ID: 36240621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How Microbes Evolved to Tolerate Oxygen.
    Khademian M; Imlay JA
    Trends Microbiol; 2021 May; 29(5):428-440. PubMed ID: 33109411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical and biochemical aspects of superoxide radicals and related species of activated oxygen.
    Singh A
    Can J Physiol Pharmacol; 1982 Nov; 60(11):1330-45. PubMed ID: 6295572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of redox in the regulation of manganese-containing superoxide dismutase biosynthesis in Escherichia coli.
    Schiavone JR; Hassan HM
    J Biol Chem; 1988 Mar; 263(9):4269-73. PubMed ID: 3279032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen: how do we stand it?
    Fridovich I
    Med Princ Pract; 2013; 22(2):131-7. PubMed ID: 22759590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response of hydroperoxidase and superoxide dismutase deficient mutants of Escherichia coli K-12 to oxidative stress.
    Schellhorn HE; Hassan HM
    Can J Microbiol; 1988 Oct; 34(10):1171-6. PubMed ID: 2848619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unveiling the photoelectrocatalytic inactivation mechanism of Escherichia coli: Convincing evidence from responses of parent and anti-oxidation single gene knockout mutants.
    Sun H; Li G; An T; Zhao H; Wong PK
    Water Res; 2016 Jan; 88():135-143. PubMed ID: 26492340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron.
    Woodmansee AN; Imlay JA
    J Biol Chem; 2002 Sep; 277(37):34055-66. PubMed ID: 12080063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae.
    Montllor-Albalate C; Colin AE; Chandrasekharan B; Bolaji N; Andersen JL; Wayne Outten F; Reddi AR
    Redox Biol; 2019 Feb; 21():101064. PubMed ID: 30576923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How superoxide reductases and flavodiiron proteins combat oxidative stress in anaerobes.
    Martins MC; Romão CV; Folgosa F; Borges PT; Frazão C; Teixeira M
    Free Radic Biol Med; 2019 Aug; 140():36-60. PubMed ID: 30735841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron-sulphur clusters and the problem with oxygen.
    Imlay JA
    Mol Microbiol; 2006 Feb; 59(4):1073-82. PubMed ID: 16430685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobic microbes: oxygen detoxification without superoxide dismutase.
    Jenney FE; Verhagen MF; Cui X; Adams MW
    Science; 1999 Oct; 286(5438):306-9. PubMed ID: 10514376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The toxicology of molecular oxygen.
    DiGuiseppi J; Fridovich I
    Crit Rev Toxicol; 1984; 12(4):315-42. PubMed ID: 6204814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic Interference of sod gene mutations on catalase activity in Escherichia coli exposed to Gramoxone® (paraquat) herbicide.
    Gravina F; Dobrzanski T; Olchanheski LR; Galvão CW; Reche PM; Pileggi SA; Azevedo RA; Sadowsky MJ; Pileggi M
    Ecotoxicol Environ Saf; 2017 May; 139():89-96. PubMed ID: 28113116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mechanism by which nitric oxide accelerates the rate of oxidative DNA damage in Escherichia coli.
    Woodmansee AN; Imlay JA
    Mol Microbiol; 2003 Jul; 49(1):11-22. PubMed ID: 12823807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen toxicity: chemistry and biology of reactive oxygen species.
    Buonocore G; Perrone S; Tataranno ML
    Semin Fetal Neonatal Med; 2010 Aug; 15(4):186-90. PubMed ID: 20494636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.