These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12074390)

  • 1. An approach to the interpretation of backpropagation neural network models in QSAR studies.
    Baskin II; Ait AO; Halberstam NM; Palyulin VA; Zefirov NS
    SAR QSAR Environ Res; 2002 Mar; 13(1):35-41. PubMed ID: 12074390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools.
    Xu X; Luan F; Liu H; Cheng J; Zhang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):353-61. PubMed ID: 21930420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide.
    Tabaraki R; Khayamian T; Ensafi AA
    J Mol Graph Model; 2006 Sep; 25(1):46-54. PubMed ID: 16337156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network.
    Pan Y; Jiang J; Wang Z
    J Hazard Mater; 2007 Aug; 147(1-2):424-30. PubMed ID: 17292543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpreting computational neural network QSAR models: a measure of descriptor importance.
    Guha R; Jurs PC
    J Chem Inf Model; 2005; 45(3):800-6. PubMed ID: 15921469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The learned symmetry concept in revealing quantitative structure-activity relationships with artificial neural networks.
    Baskin II; Halberstam NM; Mukhina TV; Palyulin VA; Zefirov NS
    SAR QSAR Environ Res; 2001; 12(4):401-16. PubMed ID: 11769122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices.
    Pan Y; Jiang J; Wang R; Cao H; Zhao J
    J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying the explanatory capacity of artificial neural networks for understanding environmental chemical quantitative structure-activity relationship models.
    Yang L; Wang P; Jiang Y; Chen J
    J Chem Inf Model; 2005; 45(6):1804-11. PubMed ID: 16309287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations.
    So SS; Karplus M
    J Med Chem; 1997 Dec; 40(26):4347-59. PubMed ID: 9435904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear indices of the "molecular pseudograph's atom adjacency matrix": definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors.
    Marrero-Ponce Y
    J Chem Inf Comput Sci; 2004; 44(6):2010-26. PubMed ID: 15554670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds.
    Prado-Prado FJ; González-Díaz H; de la Vega OM; Ubeira FM; Chou KC
    Bioorg Med Chem; 2008 Jun; 16(11):5871-80. PubMed ID: 18485714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Chemical QSAR recognition by using fuzzy min-max neural-network].
    Li Y; Ye Z; Lu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):449-51. PubMed ID: 12557519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular structure-adsorption study on current textile dyes.
    Örücü E; Tugcu G; Saçan MT
    SAR QSAR Environ Res; 2014; 25(12):983-98. PubMed ID: 25529487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices.
    Wang R; Jiang J; Pan Y; Cao H; Cui Y
    J Hazard Mater; 2009 Jul; 166(1):155-86. PubMed ID: 19101083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors.
    Xu J; Zhang H; Wang L; Liang G; Wang L; Shen X; Xu W
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):239-47. PubMed ID: 20381412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression.
    Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new hybrid system of QSAR models for predicting bioconcentration factors (BCF).
    Zhao C; Boriani E; Chana A; Roncaglioni A; Benfenati E
    Chemosphere; 2008 Dec; 73(11):1701-7. PubMed ID: 18954891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust QSAR models using Bayesian regularized neural networks.
    Burden FR; Winkler DA
    J Med Chem; 1999 Aug; 42(16):3183-7. PubMed ID: 10447964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polynomial neural network for linear and non-linear model selection in quantitative-structure activity relationship studies on the internet.
    Tetko IV; Aksenova TI; Volkovich VV; Kasheva TN; Filipov DV; Welsh WJ; Livingstone DJ; Villa AEP
    SAR QSAR Environ Res; 2000; 11(3-4):263-80. PubMed ID: 10969875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.