These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 12074845)
1. Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm. Barra V; Boire JY Comput Methods Programs Biomed; 2002 Jun; 68(3):185-93. PubMed ID: 12074845 [TBL] [Abstract][Full Text] [Related]
2. Automatic muscle and fat segmentation in the thigh from T1-Weighted MRI. Orgiu S; Lafortuna CL; Rastelli F; Cadioli M; Falini A; Rizzo G J Magn Reson Imaging; 2016 Mar; 43(3):601-10. PubMed ID: 26268693 [TBL] [Abstract][Full Text] [Related]
3. A Knowledge-Based Modality-Independent Technique for Concurrent Thigh Muscle Segmentation: Applicable to CT and MR Images. Molaie M; Zoroofi RA J Digit Imaging; 2020 Oct; 33(5):1122-1135. PubMed ID: 32588159 [TBL] [Abstract][Full Text] [Related]
4. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Le Troter A; Fouré A; Guye M; Confort-Gouny S; Mattei JP; Gondin J; Salort-Campana E; Bendahan D MAGMA; 2016 Apr; 29(2):245-57. PubMed ID: 26983429 [TBL] [Abstract][Full Text] [Related]
5. Domain-specific data augmentation for segmenting MR images of fatty infiltrated human thighs with neural networks. Gadermayr M; Li K; Müller M; Truhn D; Krämer N; Merhof D; Gess B J Magn Reson Imaging; 2019 Jun; 49(6):1676-1683. PubMed ID: 30623506 [TBL] [Abstract][Full Text] [Related]
6. Accurate segmentation of subcutaneous and intermuscular adipose tissue from MR images of the thigh. Positano V; Christiansen T; Santarelli MF; Ringgaard S; Landini L; Gastaldelli A J Magn Reson Imaging; 2009 Mar; 29(3):677-84. PubMed ID: 19243051 [TBL] [Abstract][Full Text] [Related]
7. A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image. Ji ZX; Sun QS; Xia DS Comput Med Imaging Graph; 2011 Jul; 35(5):383-97. PubMed ID: 21256710 [TBL] [Abstract][Full Text] [Related]
8. Automated quantification of muscle and fat in the thigh from water-, fat-, and nonsuppressed MR images. Makrogiannis S; Serai S; Fishbein KW; Schreiber C; Ferrucci L; Spencer RG J Magn Reson Imaging; 2012 May; 35(5):1152-61. PubMed ID: 22170747 [TBL] [Abstract][Full Text] [Related]
9. A comprehensive study on automated muscle segmentation for assessing fat infiltration in neuromuscular diseases. Gadermayr M; Disch C; Müller M; Merhof D; Gess B Magn Reson Imaging; 2018 May; 48():20-26. PubMed ID: 29269318 [TBL] [Abstract][Full Text] [Related]
10. Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images. Yang YX; Chong MS; Tay L; Yew S; Yeo A; Tan CH MAGMA; 2016 Oct; 29(5):723-31. PubMed ID: 27026244 [TBL] [Abstract][Full Text] [Related]
11. Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: The reference database MyoSegmenTUM. Schlaeger S; Freitag F; Klupp E; Dieckmeyer M; Weidlich D; Inhuber S; Deschauer M; Schoser B; Bublitz S; Montagnese F; Zimmer C; Rummeny EJ; Karampinos DC; Kirschke JS; Baum T PLoS One; 2018; 13(6):e0198200. PubMed ID: 29879128 [TBL] [Abstract][Full Text] [Related]
12. A novel segmentation framework dedicated to the follow-up of fat infiltration in individual muscles of patients with neuromuscular disorders. Ogier AC; Heskamp L; Michel CP; Fouré A; Bellemare ME; Le Troter A; Heerschap A; Bendahan D Magn Reson Med; 2020 May; 83(5):1825-1836. PubMed ID: 31677312 [TBL] [Abstract][Full Text] [Related]
13. Multiparametric MR Imaging of Age-related Changes in Healthy Thigh Muscles. Yoon MA; Hong SJ; Ku MC; Kang CH; Ahn KS; Kim BH Radiology; 2018 Apr; 287(1):235-246. PubMed ID: 29239712 [TBL] [Abstract][Full Text] [Related]
14. Performance analysis of unsupervised optimal fuzzy clustering algorithm for MRI brain tumor segmentation. Blessy SA; Sulochana CH Technol Health Care; 2015; 23(1):23-35. PubMed ID: 25408284 [TBL] [Abstract][Full Text] [Related]
16. A Comparison between 6-point Dixon MRI and MR Spectroscopy to Quantify Muscle Fat in the Thigh of Subjects with Sarcopenia. Grimm A; Meyer H; Nickel MD; Nittka M; Raithel E; Chaudry O; Friedberger A; Uder M; Kemmler W; Engelke K; Quick HH J Frailty Aging; 2019; 8(1):21-26. PubMed ID: 30734827 [TBL] [Abstract][Full Text] [Related]
17. Tissue segmentation on MR images of the brain by possibilistic clustering on a 3D wavelet representation. Barra V; Boire JY J Magn Reson Imaging; 2000 Mar; 11(3):267-78. PubMed ID: 10739558 [TBL] [Abstract][Full Text] [Related]
18. Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas. Kemnitz J; Eckstein F; Culvenor AG; Ruhdorfer A; Dannhauer T; Ring-Dimitriou S; Sänger AM; Wirth W MAGMA; 2017 Oct; 30(5):489-503. PubMed ID: 28455629 [TBL] [Abstract][Full Text] [Related]
19. Validity of estimating muscle and fat volume from a single MRI section in older adults with sarcopenia and sarcopenic obesity. Yang YX; Chong MS; Lim WS; Tay L; Yew S; Yeo A; Tan CH Clin Radiol; 2017 May; 72(5):427.e9-427.e14. PubMed ID: 28117037 [TBL] [Abstract][Full Text] [Related]
20. Brain tissue segmentation using fuzzy clustering techniques. Sucharitha M; Geetha KP Technol Health Care; 2015; 23(5):571-80. PubMed ID: 26410118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]