These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12074944)

  • 1. Accommodation to simulations of defocus and chromatic aberration in the presence of chromatic misalignment.
    Stark LR; Lee RS; Kruger PB; Rucker FJ; Ying Fan H
    Vision Res; 2002 Jun; 42(12):1485-98. PubMed ID: 12074944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image.
    Kruger PB; Mathews S; Aggarwala KR; Yager D; Kruger ES
    Vision Res; 1995 Sep; 35(17):2415-29. PubMed ID: 8594811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accommodation and chromatic aberration: effect of spatial frequency.
    Stone D; Mathews S; Kruger PB
    Ophthalmic Physiol Opt; 1993 Jul; 13(3):244-52. PubMed ID: 8265165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accommodation to static chromatic simulations of blurred retinal images.
    Lee JH; Stark LR; Cohen S; Kruger PB
    Ophthalmic Physiol Opt; 1999 May; 19(3):223-35. PubMed ID: 10627841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Readily visible changes in color contrast are insufficient to stimulate accommodation.
    Switkes E; Bradley A; Schor C
    Vision Res; 1990; 30(9):1367-76. PubMed ID: 2219752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of longitudinal chromatic aberration on the lag of accommodation and depth of field.
    Jaskulski M; Marín-Franch I; Bernal-Molina P; López-Gil N
    Ophthalmic Physiol Opt; 2016 Nov; 36(6):657-663. PubMed ID: 27790774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus: evidence that the eye uses longitudinal chromatic aberration to guide eye-growth.
    Rucker FJ; Wallman J
    Vision Res; 2009 Jul; 49(14):1775-83. PubMed ID: 19383509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of optical defocus on the accommodative accuracy for chromatic displays.
    Lovasik JV; Kergoat H
    Ophthalmic Physiol Opt; 1988; 8(4):450-7. PubMed ID: 3253639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry.
    Flitcroft DI
    Vision Res; 1989; 29(3):349-60. PubMed ID: 2773345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accommodative performance for chromatic displays.
    Lovasik JV; Kergoat H
    Ophthalmic Physiol Opt; 1988; 8(4):443-9. PubMed ID: 3253638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accommodation responses to stimuli in cone contrast space.
    Rucker FJ; Kruger PB
    Vision Res; 2004 Nov; 44(25):2931-44. PubMed ID: 15380997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of chromatic aberration on the static accommodative response.
    Bobier WR; Campbell MC; Hinch M
    Vision Res; 1992 May; 32(5):823-32. PubMed ID: 1604851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli for accommodation: blur, chromatic aberration and size.
    Kruger PB; Pola J
    Vision Res; 1986; 26(6):957-71. PubMed ID: 3750878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cone contributions to signals for accommodation and the relationship to refractive error.
    Rucker FJ; Kruger PB
    Vision Res; 2006 Oct; 46(19):3079-89. PubMed ID: 16782165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red-green opponent channel mediation of control of human ocular accommodation.
    Kotulak JC; Morse SE; Billock VA
    J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):697-703. PubMed ID: 7738858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accommodation with and without short-wavelength-sensitive cones and chromatic aberration.
    Kruger PB; Rucker FJ; Hu C; Rutman H; Schmidt NW; Roditis V
    Vision Res; 2005 May; 45(10):1265-74. PubMed ID: 15733959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear.
    Tang CY; Charman WN
    Ophthalmic Physiol Opt; 1992 Jul; 12(3):340-9. PubMed ID: 1454372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of color on contrast sensitivity with two different accommodative stimuli.
    Capilla P; Felipe A; Pons A; Artigas JM
    Optom Vis Sci; 1993 Jan; 70(1):24-9. PubMed ID: 8430005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of luminance and chromatic cues in emmetropisation.
    Rucker FJ
    Ophthalmic Physiol Opt; 2013 May; 33(3):196-214. PubMed ID: 23662955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small amounts of chromatic aberration influence dynamic accommodation.
    Kruger PB; Nowbotsing S; Aggarwala KR; Mathews S
    Optom Vis Sci; 1995 Sep; 72(9):656-66. PubMed ID: 8532307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.