BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 12076004)

  • 1. Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings.
    Chen Z; Kolb TE; Clancy KM
    J Econ Entomol; 2002 Jun; 95(3):587-94. PubMed ID: 12076004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of Douglas-fir resistance to western spruce budworm defoliation: bud burst phenology, photosynthetic compensation and growth rate.
    Chen Z; Kolb TE; Clancy KM
    Tree Physiol; 2001 Oct; 21(16):1159-69. PubMed ID: 11600338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in budburst phenology of Douglas-fir related to western spruce budworm (Lepidoptera: Tortricidae) fitness.
    Chen Z; Clancy KM; Kolb TE
    J Econ Entomol; 2003 Apr; 96(2):377-87. PubMed ID: 14994804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential role of ectomycorrhizal fungi in determining Douglas-fir resistance to defoliation by the western spruce budworm (Lepidoptera: Tortricidae).
    Palermo BL; Clancy KM; Koch GW
    J Econ Entomol; 2003 Jun; 96(3):783-91. PubMed ID: 12852617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of monoterpenes in resistance of Douglas fir to western spruce budworm defoliation.
    Chen Z; Kolb TE; Clancy KM
    J Chem Ecol; 2002 May; 28(5):897-920. PubMed ID: 12049230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal changes in foliar terpenes indicate suitability of Douglas-fir buds for western spruce budworm.
    Nealis VG; Nault JR
    J Chem Ecol; 2005 Apr; 31(4):683-96. PubMed ID: 16124245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenological shifts in conifer species stressed by spruce budworm defoliation.
    Deslauriers A; Fournier MP; Cartenì F; Mackay J
    Tree Physiol; 2019 Apr; 39(4):590-605. PubMed ID: 30597102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site factors and management influence short-term host resistance to spruce budworm, Choristoneura fumiferana (Clem.), in a species-specific manner.
    Fuentealba A; Bauce É
    Pest Manag Sci; 2012 Feb; 68(2):245-53. PubMed ID: 21796758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks.
    Song YY; Simard SW; Carroll A; Mohn WW; Zeng RS
    Sci Rep; 2015 Feb; 5():8495. PubMed ID: 25683155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of growth medium, nutrients, water, and aeration on mycorrhization and biomass allocation of greenhouse-grown interior Douglas-fir seedlings.
    Kazantseva O; Bingham M; Simard SW; Berch SM
    Mycorrhiza; 2009 Nov; 20(1):51-66. PubMed ID: 19572155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.
    James PM; Robert LE; Wotton BM; Martell DL; Fleming RA
    Ecol Appl; 2017 Mar; 27(2):532-544. PubMed ID: 27809401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Douglas-fir (Pseudotsuga menziesii)-spruce budworm (Choristoneura occidentalis) interactions: the effect of nutrition, chemical defenses, tissue phenology, and tree physical parameters on budworm success.
    Redak RA; Cates RG
    Oecologia; 1984 Apr; 62(1):61-67. PubMed ID: 28310739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests.
    Teste FP; Simard SW
    Oecologia; 2008 Nov; 158(2):193-203. PubMed ID: 18781333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spruce budworm growth, development and food utilization on young and old balsam fir trees.
    Bauce É; Crépin M; Carisey N
    Oecologia; 1994 May; 97(4):499-507. PubMed ID: 28313739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental decline in height growth in Douglas-fir.
    Bond BJ; Czarnomski NM; Cooper C; Day ME; Greenwood MS
    Tree Physiol; 2007 Mar; 27(3):441-53. PubMed ID: 17241986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing tolerance of conifer seeds and germinants.
    Hawkins BJ; Guest HJ; Kolotelo D
    Tree Physiol; 2003 Dec; 23(18):1237-46. PubMed ID: 14652223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings.
    Schoonmaker AL; Teste FP; Simard SW; Guy RD
    Oecologia; 2007 Dec; 154(3):455-66. PubMed ID: 17885766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How does synchrony with host plant affect the performance of an outbreaking insect defoliator?
    Fuentealba A; Pureswaran D; Bauce É; Despland E
    Oecologia; 2017 Aug; 184(4):847-857. PubMed ID: 28756489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of feeding by the western conifer seed bug, Leptoglossus occidentalis, on the major storage reserves of developing seeds and on seedling vigor of Douglas-fir.
    Bates SL; Lait CG; Borden JH; Kermode AR
    Tree Physiol; 2001 May; 21(7):481-7. PubMed ID: 11340049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.