BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

747 related articles for article (PubMed ID: 12076176)

  • 1. Training techniques to improve endurance exercise performances.
    Kubukeli ZN; Noakes TD; Dennis SC
    Sports Med; 2002; 32(8):489-509. PubMed ID: 12076176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes.
    Laursen PB; Jenkins DG
    Sports Med; 2002; 32(1):53-73. PubMed ID: 11772161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic and performance adaptations to interval training in endurance-trained cyclists.
    Westgarth-Taylor C; Hawley JA; Rickard S; Myburgh KH; Noakes TD; Dennis SC
    Eur J Appl Physiol Occup Physiol; 1997; 75(4):298-304. PubMed ID: 9134360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of resistance training on endurance performance. A new form of cross-training?
    Tanaka H; Swensen T
    Sports Med; 1998 Mar; 25(3):191-200. PubMed ID: 9554029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training.
    Neufer PD
    Sports Med; 1989 Nov; 8(5):302-20. PubMed ID: 2692122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intense training: the key to optimal performance before and during the taper.
    Mujika I
    Scand J Med Sci Sports; 2010 Oct; 20 Suppl 2():24-31. PubMed ID: 20840559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and performance adaptations to high-intensity interval training.
    Gibala MJ; Jones AM
    Nestle Nutr Inst Workshop Ser; 2013; 76():51-60. PubMed ID: 23899754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of high-intensity interval training on adaptations in well-trained cyclists.
    Laursen PB; Shing CM; Peake JM; Coombes JS; Jenkins DG
    J Strength Cond Res; 2005 Aug; 19(3):527-33. PubMed ID: 16095414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes.
    Iaia FM; Bangsbo J
    Scand J Med Sci Sports; 2010 Oct; 20 Suppl 2():11-23. PubMed ID: 20840558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological changes associated with the pre-event taper in athletes.
    Mujika I; Padilla S; Pyne D; Busso T
    Sports Med; 2004; 34(13):891-927. PubMed ID: 15487904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different skeletal muscle HSP70 responses to high-intensity strength training and low-intensity endurance training.
    Liu Y; Lormes W; Wang L; Reissnecker S; Steinacker JM
    Eur J Appl Physiol; 2004 Mar; 91(2-3):330-5. PubMed ID: 14595562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering.
    Ross A; Leveritt M
    Sports Med; 2001; 31(15):1063-82. PubMed ID: 11735686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applied physiology of triathlon.
    O'Toole ML; Douglas PS
    Sports Med; 1995 Apr; 19(4):251-67. PubMed ID: 7604198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials.
    Weston M; Taylor KL; Batterham AM; Hopkins WG
    Sports Med; 2014 Jul; 44(7):1005-17. PubMed ID: 24743927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of two weeks of high-intensity interval training on performance and hormone status in adolescent triathletes.
    Lee CL; Hsu MC; Astorino TA; Liu TW; Chang WD
    J Sports Med Phys Fitness; 2017 Apr; 57(4):319-329. PubMed ID: 26796078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural influences on sprint running: training adaptations and acute responses.
    Ross A; Leveritt M; Riek S
    Sports Med; 2001; 31(6):409-25. PubMed ID: 11394561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume.
    Iaia FM; Hellsten Y; Nielsen JJ; Fernström M; Sahlin K; Bangsbo J
    J Appl Physiol (1985); 2009 Jan; 106(1):73-80. PubMed ID: 18845781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A moderate carbohydrate and fat diet does not impair strength performance in moderately trained males.
    Van Zant RS; Conway JM; Seale JL
    J Sports Med Phys Fitness; 2002 Mar; 42(1):31-7. PubMed ID: 11832872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reduction in training volume and intensity for 21 days does not impair performance in cyclists.
    Rietjens GJ; Keizer HA; Kuipers H; Saris WH
    Br J Sports Med; 2001 Dec; 35(6):431-4. PubMed ID: 11726481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.