These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 12076177)

  • 1. Fatigue during high-intensity intermittent exercise: application to bodybuilding.
    Lambert CP; Flynn MG
    Sports Med; 2002; 32(8):511-22. PubMed ID: 12076177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine supplementation as an ergogenic aid for sports performance in highly trained athletes: a critical review.
    Mujika I; Padilla S
    Int J Sports Med; 1997 Oct; 18(7):491-6. PubMed ID: 9414070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance?
    Casey A; Greenhaff PL
    Am J Clin Nutr; 2000 Aug; 72(2 Suppl):607S-17S. PubMed ID: 10919967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine supplementation. Its role in human performance.
    Kraemer WJ; Volek JS
    Clin Sports Med; 1999 Jul; 18(3):651-66, ix. PubMed ID: 10410847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of carbohydrate in physical activity.
    Ivy JL
    Clin Sports Med; 1999 Jul; 18(3):469-84, v. PubMed ID: 10410835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creatine loading, resistance exercise performance, and muscle mechanics.
    Stevenson SW; Dudley GA
    J Strength Cond Res; 2001 Nov; 15(4):413-9. PubMed ID: 11726250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macronutrient considerations for the sport of bodybuilding.
    Lambert CP; Frank LL; Evans WJ
    Sports Med; 2004; 34(5):317-27. PubMed ID: 15107010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moderate-Intensity Strength Exercise to Exhaustion Results in More Pronounced Signaling Changes in Skeletal Muscles of Strength-Trained Compared With Untrained Individuals.
    Lysenko EA; Popov DV; Vepkhvadze TF; Sharova AP; Vinogradova OL
    J Strength Cond Res; 2020 Apr; 34(4):1103-1112. PubMed ID: 30299394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise.
    Parkin JM; Carey MF; Zhao S; Febbraio MA
    J Appl Physiol (1985); 1999 Mar; 86(3):902-8. PubMed ID: 10066703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age differences in human skeletal muscle fatigue during high-intensity intermittent exercise.
    Ratel S; Lazaar N; Williams CA; Bedu M; Duché P
    Acta Paediatr; 2003 Nov; 92(11):1248-54. PubMed ID: 14696843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic, anaerobic, and excess postexercise oxygen consumption energy expenditure of muscular endurance and strength: 1-set of bench press to muscular fatigue.
    Scott CB; Leighton BH; Ahearn KJ; McManus JJ
    J Strength Cond Res; 2011 Apr; 25(4):903-8. PubMed ID: 20703175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise.
    Sahlin K; Söderlund K; Tonkonogi M; Hirakoba K
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C172-8. PubMed ID: 9252454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creatine supplementation does not affect human skeletal muscle glycogen content in the absence of prior exercise.
    Sewell DA; Robinson TM; Greenhaff PL
    J Appl Physiol (1985); 2008 Feb; 104(2):508-12. PubMed ID: 18032580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction.
    Suga T; Okita K; Morita N; Yokota T; Hirabayashi K; Horiuchi M; Takada S; Takahashi T; Omokawa M; Kinugawa S; Tsutsui H
    J Appl Physiol (1985); 2009 Apr; 106(4):1119-24. PubMed ID: 19213931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle substrate utilization and lactate production.
    MacDougall JD; Ray S; Sale DG; McCartney N; Lee P; Garner S
    Can J Appl Physiol; 1999 Jun; 24(3):209-15. PubMed ID: 10364416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of an exercise protocol designed to evaluate resistance exercise performance.
    Lambert CP; Armstrong DE; Jacks D; Armstrong WJ; Flynn MG
    J Strength Cond Res; 2002 Feb; 16(1):149-51. PubMed ID: 11834121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrate supplementation and resistance training.
    Haff GG; Lehmkuhl MJ; McCoy LB; Stone MH
    J Strength Cond Res; 2003 Feb; 17(1):187-96. PubMed ID: 12580676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate availability and muscle energy metabolism during intermittent running.
    Foskett A; Williams C; Boobis L; Tsintzas K
    Med Sci Sports Exerc; 2008 Jan; 40(1):96-103. PubMed ID: 18091017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans.
    Bogdanis GC; Nevill ME; Lakomy HK; Boobis LH
    Acta Physiol Scand; 1998 Jul; 163(3):261-72. PubMed ID: 9715738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.