These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 12077219)

  • 21. Ex vivo depotentiation of conditioning-induced potentiation at thalamic input synapses onto the lateral amygdala requires GluN2B-containing NMDA receptors.
    Park S; Lee S; Kim J; Choi S
    Neurosci Lett; 2012 Nov; 530(2):121-6. PubMed ID: 23069667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term potentiation in freely moving rats reveals asymmetries in thalamic and cortical inputs to the lateral amygdala.
    Doyère V; Schafe GE; Sigurdsson T; LeDoux JE
    Eur J Neurosci; 2003 Jun; 17(12):2703-15. PubMed ID: 12823477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear.
    Dalton GL; Wu DC; Wang YT; Floresco SB; Phillips AG
    Neuropharmacology; 2012 Feb; 62(2):797-806. PubMed ID: 21925518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auditory fear conditioning facilitates neurotransmitter release at lateral amygdala to basal amygdala synapses.
    Choi K; Park K; Lee S; Yi JH; Woo C; Kang SJ; Shin KS
    Biochem Biophys Res Commun; 2021 Dec; 584():39-45. PubMed ID: 34768080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways.
    Li XF; Stutzmann GE; LeDoux JE
    Learn Mem; 1996; 3(2-3):229-42. PubMed ID: 10456093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activity-dependent synaptic plasticity in the central nucleus of the amygdala.
    Samson RD; Paré D
    J Neurosci; 2005 Feb; 25(7):1847-55. PubMed ID: 15716421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. L-type voltage-gated calcium channels in the basolateral amygdala are necessary for fear extinction.
    Davis SE; Bauer EP
    J Neurosci; 2012 Sep; 32(39):13582-6. PubMed ID: 23015447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala.
    Bauer EP; LeDoux JE
    J Neurosci; 2004 Oct; 24(43):9507-12. PubMed ID: 15509737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of NMDA Receptor- and Voltage-Gated L-Type Calcium Channel-Dependent Hippocampal LTP Critically Rely on Proteolysis That Is Mediated by Distinct Metalloproteinases.
    Wiera G; Nowak D; van Hove I; Dziegiel P; Moons L; Mozrzymas JW
    J Neurosci; 2017 Feb; 37(5):1240-1256. PubMed ID: 28069922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction- and conditioning-protocol dependent involvement of NR2B-containing NMDA receptors in synaptic potentiation and contextual fear memory in the hippocampal CA1 region of rats.
    Zhang XH; Wu LJ; Gong B; Ren M; Li BM; Zhuo M
    Mol Brain; 2008 Sep; 1():9. PubMed ID: 18826591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala.
    Huang YY; Kandel ER
    Neuron; 1998 Jul; 21(1):169-78. PubMed ID: 9697861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forebrain GluN2A overexpression impairs fear extinction and NMDAR-dependent long-term depression in the lateral amygdala.
    Wang J; Han J; Wang S; Duan Y; Bao C; Luo Y; Xue Q; Cao X
    Brain Res Bull; 2021 Sep; 174():1-10. PubMed ID: 34058285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of L-type Ca2+ channels in the induction of long-term potentiation in the basolateral amygdala-dentate gyrus pathway of anesthetized rats.
    Niikura Y; Abe K; Misawa M
    Brain Res; 2004 Aug; 1017(1-2):218-21. PubMed ID: 15261117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of voltage-dependent calcium channel long-term potentiation (LTP) and NMDA LTP in spatial memory.
    Borroni AM; Fichtenholtz H; Woodside BL; Teyler TJ
    J Neurosci; 2000 Dec; 20(24):9272-6. PubMed ID: 11125005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-frequency stimulation-induced synaptic potentiation in dorsal and ventral CA1 hippocampal synapses: the involvement of NMDA receptors, mGluR5, and (L-type) voltage-gated calcium channels.
    Papatheodoropoulos C; Kouvaros S
    Learn Mem; 2016 Sep; 23(9):460-4. PubMed ID: 27531836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GluN2B subunits of the NMDA receptor contribute to the AMPA receptor internalization during long-term depression in the lateral amygdala of juvenile rats.
    Yu SY; Wu DC; Zhan RZ
    Neuroscience; 2010 Dec; 171(4):1102-8. PubMed ID: 20884329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for postsynaptic induction and expression of NMDA receptor independent LTP.
    Grover LM
    J Neurophysiol; 1998 Mar; 79(3):1167-82. PubMed ID: 9497399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term potentiation and the role of N-methyl-D-aspartate receptors.
    Volianskis A; France G; Jensen MS; Bortolotto ZA; Jane DE; Collingridge GL
    Brain Res; 2015 Sep; 1621():5-16. PubMed ID: 25619552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcitonin gene-related peptide erases the fear memory and facilitates long-term potentiation in the central nucleus of the amygdala in rats.
    Wu X; Zhang JT; Liu J; Yang S; Chen T; Chen JG; Wang F
    J Neurochem; 2015 Nov; 135(4):787-98. PubMed ID: 26179152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synaptic mechanisms of associative memory in the amygdala.
    Maren S
    Neuron; 2005 Sep; 47(6):783-6. PubMed ID: 16157273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.