These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12077780)

  • 1. Development of a model for prediction of survival in pediatric trauma patients: comparison of artificial neural networks and logistic regression.
    DiRusso SM; Chahine AA; Sullivan T; Risucci D; Nealon P; Cuff S; Savino J; Slim M
    J Pediatr Surg; 2002 Jul; 37(7):1098-104; discussion 1098-104. PubMed ID: 12077780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial neural network as a model for prediction of survival in trauma patients: validation for a regional trauma area.
    DiRusso SM; Sullivan T; Holly C; Cuff SN; Savino J
    J Trauma; 2000 Aug; 49(2):212-20; discussion 220-3. PubMed ID: 10963531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple mathematical modification of TRISS markedly improves calibration.
    Osler TM; Rogers FB; Badger GJ; Healey M; Vane DW; Shackford SR
    J Trauma; 2002 Oct; 53(4):630-4. PubMed ID: 12394858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of artificial neural network and logistic regression models for prediction of outcomes in trauma patients: A systematic review and meta-analysis.
    Hassanipour S; Ghaem H; Arab-Zozani M; Seif M; Fararouei M; Abdzadeh E; Sabetian G; Paydar S
    Injury; 2019 Feb; 50(2):244-250. PubMed ID: 30660332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data.
    Eftekhar B; Mohammad K; Ardebili HE; Ghodsi M; Ketabchi E
    BMC Med Inform Decis Mak; 2005 Feb; 5():3. PubMed ID: 15713231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting hospital mortality among injured children using a national trauma database.
    Burd RS; Jang TS; Nair SS
    J Trauma; 2006 Apr; 60(4):792-801. PubMed ID: 16612299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surgical quality improvement: a simplified method to apply national standards to pediatric trauma care.
    Leaphart CL; Graham D; Pieper P; Celso BG; Tepas JJ
    J Pediatr Surg; 2009 Jan; 44(1):156-9. PubMed ID: 19159735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of neural networks for computing predicted probability of survival for trauma victims.
    Fuller JJ; Emmett M; Kessel JW; Price PD; Forsythe JH
    W V Med J; 2005; 101(3):120-5. PubMed ID: 16161530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A trauma mortality prediction model based on the anatomic injury scale.
    Osler T; Glance L; Buzas JS; Mukamel D; Wagner J; Dick A
    Ann Surg; 2008 Jun; 247(6):1041-8. PubMed ID: 18520233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Norwegian survival prediction model in trauma: modelling effects of anatomic injury, acute physiology, age, and co-morbidity.
    Jones JM; Skaga NO; Søvik S; Lossius HM; Eken T
    Acta Anaesthesiol Scand; 2014 Mar; 58(3):303-15. PubMed ID: 24438461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis: clinical article.
    Azimi P; Benzel EC; Shahzadi S; Azhari S; Mohammadi HR
    J Neurosurg Spine; 2014 Mar; 20(3):300-5. PubMed ID: 24438428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of artificial neural networks for risk stratification of hospital mortality].
    Trujillano J; March J; Badia M; Rodríguez A; Sorribas A
    Gac Sanit; 2003; 17(6):504-11. PubMed ID: 14670258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting hospital mortality for patients in the intensive care unit: a comparison of artificial neural networks with logistic regression models.
    Clermont G; Angus DC; DiRusso SM; Griffin M; Linde-Zwirble WT
    Crit Care Med; 2001 Feb; 29(2):291-6. PubMed ID: 11246308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of an artificial neural network to predict head injury outcome.
    Rughani AI; Dumont TM; Lu Z; Bongard J; Horgan MA; Penar PL; Tranmer BI
    J Neurosurg; 2010 Sep; 113(3):585-90. PubMed ID: 20020844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of injury coding schemes on predicting hospital mortality after pediatric injury.
    Burd RS; Madigan D
    Acad Emerg Med; 2009 Jul; 16(7):639-45. PubMed ID: 19549015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting in-hospital death among patients injured in traffic crashes in Saudi Arabia.
    Alghnam S; Palta M; Hamedani A; Alkelya M; Remington PL; Durkin MS
    Injury; 2014 Nov; 45(11):1693-9. PubMed ID: 24950798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian logistic injury severity score: a method for predicting mortality using international classification of disease-9 codes.
    Burd RS; Ouyang M; Madigan D
    Acad Emerg Med; 2008 May; 15(5):466-75. PubMed ID: 18439203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing an Artificial Neural Network to Logistic Regression for Predicting ED Visit Risk Among Patients With Cancer: A Population-Based Cohort Study.
    Sutradhar R; Barbera L
    J Pain Symptom Manage; 2020 Jul; 60(1):1-9. PubMed ID: 32088358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of artificial neural networks to decision making in patients with lumbar spinal canal stenosis.
    Azimi P; Mohammadi HR; Benzel EC; Shahzadi S; Azhari S
    J Neurosurg Sci; 2017 Dec; 61(6):603-611. PubMed ID: 25384605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of "Trauma and Injury Severity Score" and "A Severity Characterization of Trauma" score to trauma patients in a setting different from "Major Trauma Outcome Study".
    Rabbani A; Moini M
    Arch Iran Med; 2007 Jul; 10(3):383-6. PubMed ID: 17604479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.