These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 12079094)
1. Runoff characteristics of pesticides from paddy fields and reduction of risk to the aquatic environment. Ebise S; Inoue T Water Sci Technol; 2002; 45(9):127-31. PubMed ID: 12079094 [TBL] [Abstract][Full Text] [Related]
2. Runoff characteristics of particulate pesticides in a river from paddy fields. Inoue T; Ebise S; Numabe A; Nagafuchi O; Matsui Y Water Sci Technol; 2002; 45(9):121-6. PubMed ID: 12079093 [TBL] [Abstract][Full Text] [Related]
3. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model. Nakano Y; Yoshida T; Inoue T Water Res; 2004 Jul; 38(13):3023-30. PubMed ID: 15261540 [TBL] [Abstract][Full Text] [Related]
4. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring. Vu SH; Ishihara S; Watanabe H Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930 [TBL] [Abstract][Full Text] [Related]
5. A study on pesticide runoff from paddy fields to a river in rural region--1: field survey of pesticide runoff in the Kozakura River, Japan. Nakano Y; Miyazaki A; Yoshida T; Ono K; Inoue T Water Res; 2004 Jul; 38(13):3017-22. PubMed ID: 15261539 [TBL] [Abstract][Full Text] [Related]
6. Mass loading and partitioning of dioxins in irrigation runoff from Japanese paddy fields: combination usage of the CALUX assay with HRGC/HRMS. Kanematsu M; Shimizu Y; Sato K; Kim S; Suzuki T; Park B; Saino R; Nakamura M Chemosphere; 2009 Aug; 76(6):860-6. PubMed ID: 19443016 [TBL] [Abstract][Full Text] [Related]
7. Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations. Phillips PJ; Bode RW Pest Manag Sci; 2004 Jun; 60(6):531-43. PubMed ID: 15198325 [TBL] [Abstract][Full Text] [Related]
8. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models. Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738 [TBL] [Abstract][Full Text] [Related]
9. Pesticides in the Rhône river delta (France): basic data for a field-based exposure assessment. Comoretto L; Arfib B; Chiron S Sci Total Environ; 2007 Jul; 380(1-3):124-32. PubMed ID: 17324449 [TBL] [Abstract][Full Text] [Related]
10. Environmental fate of the herbicide molinate in a rice-paddy-soil lysimeter. Park BJ; Kyung KS; Choi JH; Im GJ; Kim IS; Shim JH Bull Environ Contam Toxicol; 2005 Nov; 75(5):937-44. PubMed ID: 16400582 [No Abstract] [Full Text] [Related]
11. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed. Luo Y; Zhang M J Environ Qual; 2009; 38(2):664-74. PubMed ID: 19244487 [TBL] [Abstract][Full Text] [Related]
12. Comparison of storm intensity and application timing on modeled transport and fate of six contaminants. Chiovarou ED; Siewicki TC Sci Total Environ; 2008 Jan; 389(1):87-100. PubMed ID: 17904201 [TBL] [Abstract][Full Text] [Related]
13. Estimation of environmental impact of some of the most often occurring pesticides in Slovenian surface and underground water. Gotvajn AZ; Zagorc-Koncan J; Tisler T Water Sci Technol; 2001; 44(7):87-90. PubMed ID: 11724499 [TBL] [Abstract][Full Text] [Related]
14. Fate of pesticides in soil in a coastal lagoon area and associated water quality impacts. Tanik A; Gurel M; Zeren O; Gonenc IE; Arslan H; Uysal Y; Un ZB; Yalvac M Water Sci Technol; 2002; 45(9):111-20. PubMed ID: 12079092 [TBL] [Abstract][Full Text] [Related]
15. Risk assessment of lambda-cyhalothrin on aquatic organisms in paddy field in China. Gu BG; Wang HM; Chen WL; Cai DJ; Shan ZJ Regul Toxicol Pharmacol; 2007 Jun; 48(1):69-74. PubMed ID: 17379369 [TBL] [Abstract][Full Text] [Related]
16. Dissolved organic matter from agricultural fields in the irrigation period. Shim S; Kim B; Hosoi Y; Masuda T Water Sci Technol; 2005; 52(12):233-41. PubMed ID: 16477991 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of a multiresidue method for determination of 82 pesticides in water using GC. Mamun MI; Park JH; Choi JH; Kim HK; Choi WJ; Han SS; Hwang K; Jang NI; Assayed ME; El-Dib MA; Shin HC; Abd El-Aty AM; Shim JH J Sep Sci; 2009 Feb; 32(4):559-74. PubMed ID: 19212978 [TBL] [Abstract][Full Text] [Related]
18. Variation of 4,5,6,7-tetrachlorophthalide in water after aerial application to rice cultivation area. Maeda T; Iwashita M; Hori T; Asada T; Oikawa K; Kawata K Bull Environ Contam Toxicol; 2008 May; 80(5):399-402. PubMed ID: 18500665 [TBL] [Abstract][Full Text] [Related]
19. Screening the leaching tendency of pesticides applied in the Amu Darya Basin (Uzbekistan). Papa E; Castiglioni S; Gramatica P; Nikolayenko V; Kayumov O; Calamari D Water Res; 2004 Sep; 38(16):3485-94. PubMed ID: 15325174 [TBL] [Abstract][Full Text] [Related]
20. Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains. Nolan BT; Dubus IG; Surdyk N; Fowler HJ; Burton A; Hollis JM; Reichenberger S; Jarvis NJ Pest Manag Sci; 2008 Sep; 64(9):933-44. PubMed ID: 18416432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]