BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 12079850)

  • 1. Regulation of fat metabolism in skeletal muscle.
    Jeukendrup AE
    Ann N Y Acad Sci; 2002 Jun; 967():217-35. PubMed ID: 12079850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise.
    Holloway GP; Bezaire V; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    J Physiol; 2006 Feb; 571(Pt 1):201-10. PubMed ID: 16357012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of fat/carbohydrate interaction in human skeletal muscle during exercise.
    Spriet LL
    Adv Exp Med Biol; 1998; 441():249-61. PubMed ID: 9781331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs.
    Schmidt I; Herpin P
    J Nutr; 1998 May; 128(5):886-93. PubMed ID: 9566999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification.
    Bruce CR; Brolin C; Turner N; Cleasby ME; van der Leij FR; Cooney GJ; Kraegen EW
    Am J Physiol Endocrinol Metab; 2007 Apr; 292(4):E1231-7. PubMed ID: 17179390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle.
    Bezaire V; Heigenhauser GJ; Spriet LL
    Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E85-91. PubMed ID: 12954596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content.
    Bruce CR; Thrush AB; Mertz VA; Bezaire V; Chabowski A; Heigenhauser GJ; Dyck DJ
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E99-E107. PubMed ID: 16464906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Importance of Fatty Acids as Nutrients during Post-Exercise Recovery.
    Lundsgaard AM; Fritzen AM; Kiens B
    Nutrients; 2020 Jan; 12(2):. PubMed ID: 31973165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acidosis attenuates CPT-I-supported bioenergetics as a potential mechanism limiting lipid oxidation.
    Frangos SM; DesOrmeaux GJ; Holloway GP
    J Biol Chem; 2023 Sep; 299(9):105079. PubMed ID: 37482278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview.
    Holloway GP; Luiken JJ; Glatz JF; Spriet LL; Bonen A
    Acta Physiol (Oxf); 2008 Dec; 194(4):293-309. PubMed ID: 18510711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the interaction of carbohydrate and fat metabolism during exercise.
    Spriet LL
    Sports Med; 2014 May; 44 Suppl 1(Suppl 1):S87-96. PubMed ID: 24791920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory mechanisms in the interaction between carbohydrate and lipid oxidation during exercise.
    Spriet LL; Watt MJ
    Acta Physiol Scand; 2003 Aug; 178(4):443-52. PubMed ID: 12864750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise.
    Roepstorff C; Halberg N; Hillig T; Saha AK; Ruderman NB; Wojtaszewski JF; Richter EA; Kiens B
    Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E133-42. PubMed ID: 15383373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise.
    Lundsgaard AM; Fritzen AM; Kiens B
    Trends Endocrinol Metab; 2018 Jan; 29(1):18-30. PubMed ID: 29221849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise.
    Miotto PM; Steinberg GR; Holloway GP
    Biochem J; 2017 Feb; 474(4):557-569. PubMed ID: 27941154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does skeletal muscle carnitine availability influence fuel selection during exercise?
    Stephens FB
    Proc Nutr Soc; 2018 Feb; 77(1):11-19. PubMed ID: 29037265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation.
    Holloway GP; Benton CR; Mullen KL; Yoshida Y; Snook LA; Han XX; Glatz JF; Luiken JJ; Lally J; Dyck DJ; Bonen A
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E738-47. PubMed ID: 19141681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fatty acid oxidation.
    Bezaire V; Bruce CR; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E509-15. PubMed ID: 16219667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle.
    Cameron-Smith D; Burke LM; Angus DJ; Tunstall RJ; Cox GR; Bonen A; Hawley JA; Hargreaves M
    Am J Clin Nutr; 2003 Feb; 77(2):313-8. PubMed ID: 12540388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FAT/CD36-null mice reveal that mitochondrial FAT/CD36 is required to upregulate mitochondrial fatty acid oxidation in contracting muscle.
    Holloway GP; Jain SS; Bezaire V; Han XX; Glatz JF; Luiken JJ; Harper ME; Bonen A
    Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R960-7. PubMed ID: 19625692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.