These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12080135)

  • 1. Structure of the 1-36 N-terminal fragment of human phospholamban phosphorylated at Ser-16 and Thr-17.
    Pollesello P; Annila A
    Biophys J; 2002 Jul; 83(1):484-90. PubMed ID: 12080135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the 1-36 amino-terminal fragment of human phospholamban by nuclear magnetic resonance and modeling of the phospholamban pentamer.
    Pollesello P; Annila A; Ovaska M
    Biophys J; 1999 Apr; 76(4):1784-95. PubMed ID: 10096878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alpha-helical propensity of the cytoplasmic domain of phospholamban: a molecular dynamics simulation of the effect of phosphorylation and mutation.
    Paterlini MG; Thomas DD
    Biophys J; 2005 May; 88(5):3243-51. PubMed ID: 15764655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ser and Thr residues modulate the conformation of pro-kinked transmembrane alpha-helices.
    Deupi X; Olivella M; Govaerts C; Ballesteros JA; Campillo M; Pardo L
    Biophys J; 2004 Jan; 86(1 Pt 1):105-15. PubMed ID: 14695254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation states of phospholamban.
    Colyer J
    Ann N Y Acad Sci; 1998 Sep; 853():79-91. PubMed ID: 10603938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time course and mechanisms of phosphorylation of phospholamban residues in ischemia-reperfused rat hearts. Dissociation of phospholamban phosphorylation pathways.
    Vittone L; Mundiña-Weilenmann C; Said M; Ferrero P; Mattiazzi A
    J Mol Cell Cardiol; 2002 Jan; 34(1):39-50. PubMed ID: 11812163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of CMAP and electrostatic cutoffs on the dynamics of an integral membrane protein: the phospholamban study.
    Houndonougbo Y; Kuczera K; Jas GS
    J Biomol Struct Dyn; 2008 Aug; 26(1):17-34. PubMed ID: 18533723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation by cAMP-dependent protein kinase modulates the structural coupling between the transmembrane and cytosolic domains of phospholamban.
    Li J; Bigelow DJ; Squier TC
    Biochemistry; 2003 Sep; 42(36):10674-82. PubMed ID: 12962492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of protein phosphorylation in the regions of consecutive serine/threonine residues by negative ion electrospray collision-induced dissociation. Approach to pinpointing of phosphorylation sites.
    Edelson-Averbukh M; Pipkorn R; Lehmann WD
    Anal Chem; 2007 May; 79(9):3476-86. PubMed ID: 17388569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes in the cytoplasmic domain of phospholamban by phosphorylation at Ser16: a molecular dynamics study.
    Sugita Y; Miyashita N; Yoda T; Ikeguchi M; Toyoshima C
    Biochemistry; 2006 Oct; 45(39):11752-61. PubMed ID: 17002276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation of the cytoplasmic domain of phospholamban by NMR and CD.
    Hubbard JA; MacLachlan LK; Meenan E; Salter CJ; Reid DG; Lahouratate P; Humphries J; Stevens N; Bell D; Neville WA
    Mol Membr Biol; 1994; 11(4):263-9. PubMed ID: 7711836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry.
    Trimpin S; Mixon AE; Stapels MD; Kim MY; Spencer PS; Deinzer ML
    Biochemistry; 2004 Feb; 43(7):2091-105. PubMed ID: 14967049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation alters backbone conformational preferences of serine and threonine peptides.
    Kim SY; Jung Y; Hwang GS; Han H; Cho M
    Proteins; 2011 Nov; 79(11):3155-65. PubMed ID: 21989936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation effects on cis/trans isomerization and the backbone conformation of serine-proline motifs: accelerated molecular dynamics analysis.
    Hamelberg D; Shen T; McCammon JA
    J Am Chem Soc; 2005 Feb; 127(6):1969-74. PubMed ID: 15701032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serine and threonine residues bend alpha-helices in the chi(1) = g(-) conformation.
    Ballesteros JA; Deupi X; Olivella M; Haaksma EE; Pardo L
    Biophys J; 2000 Nov; 79(5):2754-60. PubMed ID: 11053148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient access to enantiopure γ4-amino acids with proteinogenic side-chains and structural investigation of γ4-Asn and γ4-Ser in hybrid peptide helices.
    Jadhav SV; Misra R; Singh SK; Gopi HN
    Chemistry; 2013 Nov; 19(48):16256-62. PubMed ID: 24151124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct effects of phosphorylation on the preferred backbone conformation of peptides: a nuclear magnetic resonance study.
    Tholey A; Lindemann A; Kinzel V; Reed J
    Biophys J; 1999 Jan; 76(1 Pt 1):76-87. PubMed ID: 9876124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen exchange study on the hydroxyl groups of serine and threonine residues in proteins and structure refinement using NOE restraints with polar side-chain groups.
    Takeda M; Jee J; Ono AM; Terauchi T; Kainosho M
    J Am Chem Soc; 2011 Nov; 133(43):17420-7. PubMed ID: 21955241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural model of the phospholamban ion channel complex in phospholipid membranes.
    Arkin IT; Rothman M; Ludlam CF; Aimoto S; Engelman DM; Rothschild KJ; Smith SO
    J Mol Biol; 1995 May; 248(4):824-34. PubMed ID: 7752243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helical structure of phospholamban in membrane bilayers.
    Smith SO; Kawakami T; Liu W; Ziliox M; Aimoto S
    J Mol Biol; 2001 Nov; 313(5):1139-48. PubMed ID: 11700069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.