These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12081514)

  • 1. Computational fluid dynamics and vascular access.
    Krueger U; Zanow J; Scholz H
    Artif Organs; 2002 Jul; 26(7):571-5. PubMed ID: 12081514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Two Different Arteriovenous Anastomotic Forms By Numerical 3D Simulation of Blood Flow.
    Krueger U; Zanow J; Scholz H
    Int J Angiol; 2000 Oct; 9(4):226-231. PubMed ID: 11062312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of arteriovenous graft flow rate on vascular access hemodynamics in a novel modular anastomotic valve device.
    McNally A; Akingba AG; Sucosky P
    J Vasc Access; 2018 Sep; 19(5):446-454. PubMed ID: 30192183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses.
    Perktold K; Leuprecht A; Prosi M; Berk T; Czerny M; Trubel W; Schima H
    Ann Biomed Eng; 2002 Apr; 30(4):447-60. PubMed ID: 12085997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel modular anastomotic valve device for hemodialysis vascular access: preliminary computational hemodynamic assessment.
    McNally A; Akingba AG; Robinson EA; Sucosky P
    J Vasc Access; 2014; 15(6):448-60. PubMed ID: 25198822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro testing of a newly developed arteriovenous double-outflow graft.
    Heise M; Kirschner P; Rabsch A; Zanow J; Settmacher U; Heidenhain C
    J Vasc Surg; 2010 Aug; 52(2):421-8. PubMed ID: 20591600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential venous anastomosis design to enhance patency of arterio-venous grafts for hemodialysis.
    Kabinejadian F; Su B; Ghista DN; Ismail M; Kim S; Leo HL
    Comput Methods Biomech Biomed Engin; 2017 Jan; 20(1):85-93. PubMed ID: 27328413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing radiocephalic wrist arteriovenous fistulas of obtuse anastomosis using computational fluid dynamics and clinical application.
    Lee J; Kim S; Kim SM; Song R; Kim HK; Park JS; Park SC
    J Vasc Access; 2016 Nov; 17(6):512-520. PubMed ID: 27791257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts.
    Leuprecht A; Perktold K; Prosi M; Berk T; Trubel W; Schima H
    J Biomech; 2002 Feb; 35(2):225-36. PubMed ID: 11784541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the hemodynamics in 6mm and 4-7 mm hemodialysis grafts by means of CFD.
    Van Tricht I; De Wachter D; Tordoir J; Verdonck P
    J Biomech; 2006; 39(2):226-36. PubMed ID: 16321624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational estimation of fluid mechanical benefits from a fluid deflector at the distal end of artificial vascular grafts.
    Roos MW; Wadbro E; Berggren M
    Comput Biol Med; 2013 Feb; 43(2):164-8. PubMed ID: 23260571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood Flow in Idealized Vascular Access for Hemodialysis: A Review of Computational Studies.
    Ene-Iordache B; Remuzzi A
    Cardiovasc Eng Technol; 2017 Sep; 8(3):295-312. PubMed ID: 28664239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation of flow rate and angle of injected venous needle on influencing intimal hyperplasia at the venous anastomosis of the hemodialysis graft.
    Yang L; Yin A; Liu W
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):239-248. PubMed ID: 28168585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational simulation of biomechanics in e-PTFE and venous Miller's cuffs: implications for intimal hyperplasia.
    Li XM; Rittgers SE
    J Med Eng Technol; 2005; 29(4):187-96. PubMed ID: 16012071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.