These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 12081553)
21. Optimization of electrotransformation conditions for Leuconostoc mesenteroides subsp. mesenteroides ATCC8293. Jin Q; Eom HJ; Jung JY; Moon JS; Kim JH; Han NS Lett Appl Microbiol; 2012 Oct; 55(4):314-21. PubMed ID: 22897881 [TBL] [Abstract][Full Text] [Related]
22. Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131. Drosinos EH; Mataragas M; Nasis P; Galiotou M; Metaxopoulos J J Appl Microbiol; 2005; 99(6):1314-23. PubMed ID: 16313403 [TBL] [Abstract][Full Text] [Related]
23. In vitro and in situ growth characteristics and behaviour of spoilage organisms associated with anaerobically stored cooked meat products. Vermeiren L; Devlieghere F; De Graef V; Debevere J J Appl Microbiol; 2005; 98(1):33-42. PubMed ID: 15610415 [TBL] [Abstract][Full Text] [Related]
24. Analysis of rpoB polymorphism and PCR-based approaches for the identification of Leuconostoc mesenteroides at the species and subspecies level. Ricciardi A; Storti LV; Zotta T; Felis GE; Parente E Int J Food Microbiol; 2020 Apr; 318():108474. PubMed ID: 31841785 [TBL] [Abstract][Full Text] [Related]
26. Evidence for a chromosomally determined mesenterocin, a bacteriocin produced by Leuconostoc mesenteroides subsp. mesenteroides OZ. Osmanagaoglu O; Kiran F J Basic Microbiol; 2011 Jun; 51(3):279-88. PubMed ID: 21298683 [TBL] [Abstract][Full Text] [Related]
27. Characterization of mesentericin ST99, a bacteriocin produced by Leuconostoc mesenteroides subsp. dextranicum ST99 isolated from boza. Todorov SD; Dicks LM J Ind Microbiol Biotechnol; 2004 Aug; 31(7):323-9. PubMed ID: 15252717 [TBL] [Abstract][Full Text] [Related]
28. Mesenterocin 52, a bacteriocin produced by Leuconostoc mesenteroides ssp. mesenteroides FR 52. Mathieu F; Suwandhi IS; Rekhif N; Millière JB; Lefebvre G J Appl Bacteriol; 1993 Apr; 74(4):372-9. PubMed ID: 8486542 [TBL] [Abstract][Full Text] [Related]
29. Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides. Schmitt P; Vasseur C; Phalip V; Huang DQ; Diviès C; Prévost H Appl Microbiol Biotechnol; 1997 Jun; 47(6):715-8. PubMed ID: 9237392 [TBL] [Abstract][Full Text] [Related]
31. Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. Johanningsmeier S; McFeeters RF; Fleming HP; Thompson RL J Food Sci; 2007 Jun; 72(5):M166-72. PubMed ID: 17995739 [TBL] [Abstract][Full Text] [Related]
32. Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures. Loubiere P; Salou P; Leroy MJ; Lindley ND; Pareilleux A J Bacteriol; 1992 Aug; 174(16):5302-8. PubMed ID: 1644757 [TBL] [Abstract][Full Text] [Related]
33. Survival of freeze-dried leuconostoc mesenteroides and Lactobacillus plantarum related to their cellular fatty acids composition during storage. Coulibaly I; Amenan AY; Lognay G; Fauconnier ML; Thonart P Appl Biochem Biotechnol; 2009 Apr; 157(1):70-84. PubMed ID: 18491235 [TBL] [Abstract][Full Text] [Related]
34. [Effect of L-malate on glucose fermentation by Leuconostoc mesenteroides]. Kandler O; Winter J; Stetter KO Arch Mikrobiol; 1973 Mar; 90(1):65-75. PubMed ID: 4706775 [No Abstract] [Full Text] [Related]
35. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris. Özcan E; Selvi SS; Nikerel E; Teusink B; Toksoy Öner E; Çakır T Appl Microbiol Biotechnol; 2019 Apr; 103(7):3153-3165. PubMed ID: 30712128 [TBL] [Abstract][Full Text] [Related]
36. Pyruvate fermentation by Oenococcus oeni and Leuconostoc mesenteroides and role of pyruvate dehydrogenase in anaerobic fermentation. Wagner N; Tran QH; Richter H; Selzer PM; Unden G Appl Environ Microbiol; 2005 Sep; 71(9):4966-71. PubMed ID: 16151074 [TBL] [Abstract][Full Text] [Related]
37. Di-tripeptides and oligopeptides are taken up via distinct transport mechanisms in Lactococcus lactis. Kunji ER; Smid EJ; Plapp R; Poolman B; Konings WN J Bacteriol; 1993 Apr; 175(7):2052-9. PubMed ID: 8458848 [TBL] [Abstract][Full Text] [Related]
38. The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Ricciardi A; Storti LV; Giavalisco M; Parente E; Zotta T Foods; 2022 Feb; 11(4):. PubMed ID: 35206012 [No Abstract] [Full Text] [Related]
39. Microfluidic technology applied to cell-wall protein analysis of olive related lactic acid bacteria. Lonigro SL; Valerio F; De Angelis M; De Bellis P; Lavermicocca P Int J Food Microbiol; 2009 Mar; 130(1):6-11. PubMed ID: 19185377 [TBL] [Abstract][Full Text] [Related]
40. Purification and Characterization of Lipase Produced by Eko Sukohidayat NH; Zarei M; Baharin BS; Manap MY Molecules; 2018 Jul; 23(7):. PubMed ID: 30037038 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]