BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12081653)

  • 1. Intrinsic optical signals in the dorsal horn of rat spinal cord slices elicited by brief repetitive stimulation.
    Asai T; Kusudo K; Ikeda H; Murase K
    Eur J Neurosci; 2002 Jun; 15(11):1737-46. PubMed ID: 12081653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic optical signals in the rat optic nerve: role for K(+) uptake via NKCC1 and swelling of astrocytes.
    MacVicar BA; Feighan D; Brown A; Ransom B
    Glia; 2002 Feb; 37(2):114-23. PubMed ID: 11754210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between changes in intrinsic optical signals and cell swelling in rat spinal cord slices.
    Syková E; Vargová L; Kubinová S; Jendelová P; Chvátal A
    Neuroimage; 2003 Feb; 18(2):214-30. PubMed ID: 12595177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal cord injury-induced attenuation of GABAergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat.
    Lu Y; Zheng J; Xiong L; Zimmermann M; Yang J
    J Physiol; 2008 Dec; 586(23):5701-15. PubMed ID: 18845615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABA(A) receptor facilitation of neurokinin release from primary afferent terminals in the rat spinal cord.
    Lao L; Marvizón JC
    Neuroscience; 2005; 130(4):1013-27. PubMed ID: 15652997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of halothane on neuronal excitation in the superficial dorsal horn of rat spinal cord slices: evidence for a presynaptic action.
    Asai T; Kusudo K; Ikeda H; Takenoshita M; Murase K
    Eur J Neurosci; 2002 Apr; 15(8):1278-90. PubMed ID: 11994122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust changes of afferent-induced excitation in the rat spinal dorsal horn after conditioning high-frequency stimulation.
    Ikeda H; Asai T; Murase K
    J Neurophysiol; 2000 Apr; 83(4):2412-20. PubMed ID: 10758142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clonidine depresses LTP of C-fiber evoked field potentials in spinal dorsal horn via NO-cGMP pathway.
    Ge YX; Xin WJ; Hu NW; Zhang T; Xu JT; Liu XG
    Brain Res; 2006 Nov; 1118(1):58-65. PubMed ID: 16950233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and depression of the GABA(B) receptor in the spinal dorsal horn of adult rat.
    Yang K; Wang D; Li YQ
    Brain Res Bull; 2001 Jul; 55(4):479-85. PubMed ID: 11543948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of glial cell K-Cl cotransport.
    Gagnon KB; Adragna NC; Fyffe RE; Lauf PK
    Cell Physiol Biochem; 2007; 20(1-4):121-30. PubMed ID: 17595522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space.
    Holthoff K; Witte OW
    J Neurosci; 1996 Apr; 16(8):2740-9. PubMed ID: 8786449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal and spatial dynamics of peripheral afferent-evoked activity in the dorsal horn recorded in rat spinal cord slices.
    Yu F; Zhao ZY; He T; Yu YQ; Li Z; Chen J
    Brain Res Bull; 2017 May; 131():183-191. PubMed ID: 28458040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two different mechanisms underlie reversible, intrinsic optical signals in rat hippocampal slices.
    Fayuk D; Aitken PG; Somjen GG; Turner DA
    J Neurophysiol; 2002 Apr; 87(4):1924-37. PubMed ID: 11929912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of osmotic stress on potassium accumulation around glial cells and extracellular space volume in rat spinal cord slices.
    Vargová L; Chvátal A; Anderová M; Kubinová S; Ziak D; Syková E
    J Neurosci Res; 2001 Jul; 65(2):129-38. PubMed ID: 11438982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic, noradrenergic, and serotonergic inhibition of fast synaptic transmission in spinal lumbar dorsal horn of rat.
    Li P; Zhuo M
    Brain Res Bull; 2001 Apr; 54(6):639-47. PubMed ID: 11403990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinically relevant concentration of pregabalin has no acute inhibitory effect on excitation of dorsal horn neurons under normal or neuropathic pain conditions: An intracellular calcium-imaging study in spinal cord slices from adult rats.
    Baba H; Petrenko AB; Fujiwara N
    Brain Res; 2016 Oct; 1648(Pt A):445-458. PubMed ID: 27543338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of glutamate release from primary afferents and interneurons in the spinal cord by muscarinic receptor subtypes.
    Zhang HM; Chen SR; Pan HL
    J Neurophysiol; 2007 Jan; 97(1):102-9. PubMed ID: 17050831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased nociceptive input rapidly modulates spinal GABAergic transmission through endogenously released glutamate.
    Zhou HY; Zhang HM; Chen SR; Pan HL
    J Neurophysiol; 2007 Jan; 97(1):871-82. PubMed ID: 17108089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal-glial interactions.
    Li WE; Nagy JI
    Neuroscience; 2000; 97(1):113-23. PubMed ID: 10771343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.