These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12081927)

  • 1. Consideration of mechanical factors.
    Guldberg RE
    Ann N Y Acad Sci; 2002 Jun; 961():312-4. PubMed ID: 12081927
    [No Abstract]   [Full Text] [Related]  

  • 2. Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering.
    Maia FR; Musson DS; Naot D; da Silva LP; Bastos AR; Costa JB; Oliveira JM; Correlo VM; Reis RL; Cornish J
    Biomed Mater; 2018 Mar; 13(3):035012. PubMed ID: 29442071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun materials as potential platforms for bone tissue engineering.
    Jang JH; Castano O; Kim HW
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1065-83. PubMed ID: 19646493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a complex bone tissue culture system based on cellulose nanowhisker mechanical strain.
    Kim DS; Jung SM; Yoon GH; Lee HC; Shin HS
    Colloids Surf B Biointerfaces; 2014 Nov; 123():838-44. PubMed ID: 25454753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A new loading bioreactor for bone tissue-engineering applications].
    Zhang C; Zhang X; Wang F; Wu J; Wang Y; Lu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):804-8, 832. PubMed ID: 16156278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical stimulation of MC3T3 osteoblastic cells in a bone tissue-engineering bioreactor enhances prostaglandin E2 release.
    Vance J; Galley S; Liu DF; Donahue SW
    Tissue Eng; 2005; 11(11-12):1832-9. PubMed ID: 16411829
    [No Abstract]   [Full Text] [Related]  

  • 7. [Bone and Stem Cells. Cellular network in bone micro-environment - histological and ultrastructural aspects -].
    Amizuka N; Yamamoto T; Hasegawa T
    Clin Calcium; 2014 Apr; 24(4):475-85. PubMed ID: 24681493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New bioactive glass scaffolds with exceptional qualities for bone tissue regeneration: response of osteoblasts and osteoclasts.
    Kowal TJ; Hahn NC; Eider S; Marzillier JY; Fodera DM; Thamma U; Jain H; Falk MM
    Biomed Mater; 2018 Jan; 13(2):025005. PubMed ID: 29033393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stem cells in bone tissue engineering.
    Seong JM; Kim BC; Park JH; Kwon IK; Mantalaris A; Hwang YS
    Biomed Mater; 2010 Dec; 5(6):062001. PubMed ID: 20924139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bruton and Tec: new links in osteoimmunology.
    Boyce BF; Xing L
    Cell Metab; 2008 Apr; 7(4):283-5. PubMed ID: 18396132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From the Clinical Problem to the Basic Research-Co-Culture Models of Osteoblasts and Osteoclasts.
    Zhu S; Ehnert S; Rouß M; Häussling V; Aspera-Werz RH; Chen T; Nussler AK
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30081523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretreatment of bone with osteoclasts affects phenotypic expression of osteoblast-like cells.
    Boyan BD; Schwartz Z; Lohmann CH; Sylvia VL; Cochran DL; Dean DD; Puzas JE
    J Orthop Res; 2003 Jul; 21(4):638-47. PubMed ID: 12798063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblast and osteoclast behaviors in the turnover of attachment bones during medaka tooth replacement.
    Mantoku A; Chatani M; Aono K; Inohaya K; Kudo A
    Dev Biol; 2016 Jan; 409(2):370-81. PubMed ID: 26658319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boning up on ephrin signaling.
    Mundy GR; Elefteriou F
    Cell; 2006 Aug; 126(3):441-3. PubMed ID: 16901775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function.
    Furlan F; Galbiati C; Jorgensen NR; Jensen JE; Mrak E; Rubinacci A; Talotta F; Verde P; Blasi F
    J Bone Miner Res; 2007 Sep; 22(9):1387-96. PubMed ID: 17539736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.
    Sethu SN; Namashivayam S; Devendran S; Nagarajan S; Tsai WB; Narashiman S; Ramachandran M; Ambigapathi M
    Int J Biol Macromol; 2017 May; 98():67-74. PubMed ID: 28130134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Differentiation of osteogenic cells in culture].
    Sadof'ev LA; Podgornaia OI
    Tsitologiia; 1999; 41(10):876-84. PubMed ID: 10591125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold.
    Zhao F; Vaughan TJ; Mcnamara LM
    Biomech Model Mechanobiol; 2015 Apr; 14(2):231-43. PubMed ID: 24903125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic low dose tumor necrosis factor-α (TNF) suppresses early bone accrual in young mice by inhibiting osteoblasts without affecting osteoclasts.
    Gilbert LC; Chen H; Lu X; Nanes MS
    Bone; 2013 Sep; 56(1):174-83. PubMed ID: 23756233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of genetically modified mouse models to the elucidation of bone physiology.
    Thomas T; Lafage-Proust MH
    Rev Rhum Engl Ed; 1999 Dec; 66(12):728-35. PubMed ID: 10649609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.