These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 12081962)

  • 1. The glycolytic flux in Escherichia coli is controlled by the demand for ATP.
    Koebmann BJ; Westerhoff HV; Snoep JL; Nilsson D; Jensen PR
    J Bacteriol; 2002 Jul; 184(14):3909-16. PubMed ID: 12081962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of genes encoding F(1)-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis.
    Koebmann BJ; Solem C; Pedersen MB; Nilsson D; Jensen PR
    Appl Environ Microbiol; 2002 Sep; 68(9):4274-82. PubMed ID: 12200276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth.
    Koebmann BJ; Westerhoff HV; Snoep JL; Solem C; Pedersen MB; Nilsson D; Michelsen O; Jensen PR
    Mol Biol Rep; 2002; 29(1-2):41-5. PubMed ID: 12241072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon and energy metabolism of atp mutants of Escherichia coli.
    Jensen PR; Michelsen O
    J Bacteriol; 1992 Dec; 174(23):7635-41. PubMed ID: 1447134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate.
    Utrilla J; Gosset G; Martinez A
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1057-62. PubMed ID: 19471981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 31P-NMR saturation transfer studies of aerobic Escherichia coli cells.
    Mitsumori F; Rees D; Brindle KM; Radda GK; Campbell ID
    Biochim Biophys Acta; 1988 Apr; 969(2):185-93. PubMed ID: 2895671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation.
    Thomas S; Fell DA
    Eur J Biochem; 1998 Dec; 258(3):956-67. PubMed ID: 9990313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights on transcriptional responses of genes involved in carbon central metabolism, respiration and fermentation to low ATP levels in Escherichia coli.
    Soria S; de Anda R; Flores N; Romero-Garcia S; Gosset G; Bolívar F; Báez-Viveros JL
    J Basic Microbiol; 2013 Apr; 53(4):365-80. PubMed ID: 22914992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the physiological response of Escherichia coli under high ATP demand.
    Boecker S; Slaviero G; Schramm T; Szymanski W; Steuer R; Link H; Klamt S
    Mol Syst Biol; 2021 Dec; 17(12):e10504. PubMed ID: 34928538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism: demand management in cells.
    Oliver S
    Nature; 2002 Jul; 418(6893):33-4. PubMed ID: 12097896
    [No Abstract]   [Full Text] [Related]  

  • 11. Measurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae.
    Ytting CK; Fuglsang AT; Hiltunen JK; Kastaniotis AJ; Özalp VC; Nielsen LJ; Olsen LF
    Integr Biol (Camb); 2012 Jan; 4(1):99-107. PubMed ID: 22134619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli.
    Li Y; Xian H; Xu Y; Zhu Y; Sun Z; Wang Q; Qi Q
    Microb Cell Fact; 2021 Feb; 20(1):32. PubMed ID: 33531004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F
    Lapashina AS; Shugaeva TE; Berezina KM; Kholina TD; Feniouk BA
    Biochemistry (Mosc); 2019 Apr; 84(4):407-415. PubMed ID: 31228932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases.
    Olsen LF; Andersen AZ; Lunding A; Brasen JC; Poulsen AK
    Biophys J; 2009 May; 96(9):3850-61. PubMed ID: 19413991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulatory subunit ε in Escherichia coli F
    Sielaff H; Duncan TM; Börsch M
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):775-788. PubMed ID: 29932911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-factor engineering in lactobacilli: effects of uncoupled ATPase activity on metabolic fluxes in Lactobacillus (L.) plantarum and L. sakei.
    Rud I; Solem C; Jensen PR; Axelsson L; Naterstad K
    Metab Eng; 2008 Sep; 10(5):207-15. PubMed ID: 18582592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Quantitative kinetic model of ATP hydrolysis-synthesis by membrane H+-ATPase].
    Kister AE; Mironov AA; Drozdov-Tikhomirov LV
    Mol Biol (Mosk); 1984; 18(6):1476-85. PubMed ID: 6240592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the ace operon in Escherichia coli is triggered in response to growth rate-dependent flux-signal of ATP.
    El-Mansi M; Phue JN; Shiloach J
    FEMS Microbiol Lett; 2021 Feb; 368(2):. PubMed ID: 33417680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions.
    Larsson C; Nilsson A; Blomberg A; Gustafsson L
    J Bacteriol; 1997 Dec; 179(23):7243-50. PubMed ID: 9393686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.