These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12081966)

  • 21. Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators.
    Shingler V; Bartilson M; Moore T
    J Bacteriol; 1993 Mar; 175(6):1596-604. PubMed ID: 8449869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and isolation of a regulator protein for 3,17β-HSD expressional regulation in Comamonas testosteroni.
    Wu Y; Huang P; Xiong G; Maser E
    Chem Biol Interact; 2015 Jun; 234():197-204. PubMed ID: 25446854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Steroid Degradation in Comamonas testosteroni TA441: Identification of Metabolites and the Genes Involved in the Reactions Necessary before D-Ring Cleavage.
    Horinouchi M; Koshino H; Malon M; Hirota H; Hayashi T
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30194104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional control of the phenol hydroxylase gene phe of Corynebacterium glutamicum by the AraC-type regulator PheR.
    Chen C; Zhang Y; Xu L; Zhu K; Feng Y; Pan J; Si M; Zhang L; Shen X
    Microbiol Res; 2018 Apr; 209():14-20. PubMed ID: 29580618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steroid Degradation in Comamonas testosteroni TA441: Identification of the Entire β-Oxidation Cycle of the Cleaved B Ring.
    Horinouchi M; Koshino H; Malon M; Hirota H; Hayashi T
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375491
    [No Abstract]   [Full Text] [Related]  

  • 26. Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties.
    Hino S; Watanabe K; Takahashi N
    Microbiology (Reading); 1998 Jul; 144 ( Pt 7)():1765-1772. PubMed ID: 9695910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TeiR, a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni.
    Pruneda-Paz JL; Linares M; Cabrera JE; Genti-Raimondi S
    J Bacteriol; 2004 Mar; 186(5):1430-7. PubMed ID: 14973025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and identification of a repressor TetR for 3,17β-HSD expressional regulation in Comamonas testosteroni.
    Pan T; Huang P; Xiong G; Maser E
    Chem Biol Interact; 2015 Jun; 234():205-12. PubMed ID: 25559855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250.
    Ehrt S; Schirmer F; Hillen W
    Mol Microbiol; 1995 Oct; 18(1):13-20. PubMed ID: 8596453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel transcriptional repressor PhaR for the steroid-inducible expression of the 3,17β-hydroxysteroid dehydrogenase gene in Comamonas testosteroni ATCC11996.
    Li M; Xiong G; Maser E
    Chem Biol Interact; 2013 Feb; 202(1-3):116-25. PubMed ID: 23295223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1.
    Santos PM; Sá-Correia I
    J Biotechnol; 2007 Sep; 131(4):371-8. PubMed ID: 17826858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600.
    Shingler V; Moore T
    J Bacteriol; 1994 Mar; 176(6):1555-60. PubMed ID: 8132448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a novel steroid inducible gene associated with the beta hsd locus of Comamonas testosteroni.
    Pruneda-Paz JL; Linares M; Cabrera JE; Genti-Raimondi S
    J Steroid Biochem Mol Biol; 2004 Jan; 88(1):91-100. PubMed ID: 15026087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein.
    Nakada Y; Nishijyo T; Itoh Y
    J Bacteriol; 2002 Oct; 184(20):5633-40. PubMed ID: 12270821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons.
    Tover A; Zernant J; Chugani SA; Chakrabarty AM; Kivisaar M
    Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():173-183. PubMed ID: 10658664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning, expression and characterization of a novel short-chain dehydrogenase/reductase (SDRx) in Comamonas testosteroni.
    Gong W; Xiong G; Maser E
    J Steroid Biochem Mol Biol; 2012 Mar; 129(1-2):15-21. PubMed ID: 21111045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators.
    Ramos JL; Marqués S; Timmis KN
    Annu Rev Microbiol; 1997; 51():341-73. PubMed ID: 9343354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient heterologous expression of nicotinate dehydrogenase in Comamonas testosteroni CNB-2 with transcriptional, folding enhancement strategy.
    Lu ZH; Yang LR; Wu JP
    Enzyme Microb Technol; 2020 Mar; 134():109478. PubMed ID: 32044025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. Strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression.
    Takeo M; Murakami M; Niihara S; Yamamoto K; Nishimura M; Kato D; Negoro S
    J Bacteriol; 2008 Nov; 190(22):7367-74. PubMed ID: 18805976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Signal-regulator interactions. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon.
    Ramos JL; Michan C; Rojo F; Dwyer D; Timmis K
    J Mol Biol; 1990 Jan; 211(2):373-82. PubMed ID: 2407853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.