BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 12082109)

  • 1. Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition.
    Izsvák Z; Khare D; Behlke J; Heinemann U; Plasterk RH; Ivics Z
    J Biol Chem; 2002 Sep; 277(37):34581-8. PubMed ID: 12082109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition.
    Zayed H; Izsvák Z; Khare D; Heinemann U; Ivics Z
    Nucleic Acids Res; 2003 May; 31(9):2313-22. PubMed ID: 12711676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR solution structure of the RED subdomain of the Sleeping Beauty transposase.
    Konnova TA; Singer CM; Nesmelova IV
    Protein Sci; 2017 Jun; 26(6):1171-1181. PubMed ID: 28345263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The folding of the specific DNA recognition subdomain of the sleeping beauty transposase is temperature-dependent and is required for its binding to the transposon DNA.
    Leighton GO; Konnova TA; Idiyatullin B; Hurr SH; Zuev YF; Nesmelova IV
    PLoS One; 2014; 9(11):e112114. PubMed ID: 25375127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR structural analysis of Sleeping Beauty transposase binding to DNA.
    Carpentier CE; Schreifels JM; Aronovich EL; Carlson DF; Hackett PB; Nesmelova IV
    Protein Sci; 2014 Jan; 23(1):23-33. PubMed ID: 24243759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates.
    Izsvák Z; Ivics Z; Plasterk RH
    J Mol Biol; 2000 Sep; 302(1):93-102. PubMed ID: 10964563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of DNA transposition by CpG methylation and chromatin structure in human cells.
    Jursch T; Miskey C; Izsvák Z; Ivics Z
    Mob DNA; 2013 May; 4(1):15. PubMed ID: 23676100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon.
    Cui Z; Geurts AM; Liu G; Kaufman CD; Hackett PB
    J Mol Biol; 2002 May; 318(5):1221-35. PubMed ID: 12083513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells.
    Yant SR; Park J; Huang Y; Mikkelsen JG; Kay MA
    Mol Cell Biol; 2004 Oct; 24(20):9239-47. PubMed ID: 15456893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleeping Beauty Transposition.
    Ivics Z; Izsvák Z
    Microbiol Spectr; 2015 Apr; 3(2):MDNA3-0042-2014. PubMed ID: 26104705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-binding activity and subunit interaction of the mariner transposase.
    Zhang L; Dawson A; Finnegan DJ
    Nucleic Acids Res; 2001 Sep; 29(17):3566-75. PubMed ID: 11522826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition.
    Wang Y; Pryputniewicz-Dobrinska D; Nagy EÉ; Kaufman CD; Singh M; Yant S; Wang J; Dalda A; Kay MA; Ivics Z; Izsvák Z
    Nucleic Acids Res; 2017 Jan; 45(1):311-326. PubMed ID: 27913727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of the mariner Mos1 synaptic complex.
    Augé-Gouillou C; Brillet B; Hamelin MH; Bigot Y
    Mol Cell Biol; 2005 Apr; 25(7):2861-70. PubMed ID: 15767689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells.
    Ivics Z; Hackett PB; Plasterk RH; Izsvák Z
    Cell; 1997 Nov; 91(4):501-10. PubMed ID: 9390559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains.
    Brillet B; Bigot Y; Augé-Gouillou C
    Genetica; 2007 Jun; 130(2):105-20. PubMed ID: 16912840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution conformations of early intermediates in Mos1 transposition.
    Cuypers MG; Trubitsyna M; Callow P; Forsyth VT; Richardson JM
    Nucleic Acids Res; 2013 Feb; 41(3):2020-33. PubMed ID: 23262225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposase-transposase interactions in MOS1 complexes: a biochemical approach.
    Carpentier G; Jaillet J; Pflieger A; Adet J; Renault S; Augé-Gouillou C
    J Mol Biol; 2011 Jan; 405(4):892-908. PubMed ID: 21110982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition.
    Butler MG; Chakraborty SA; Lampe DJ
    Genetica; 2006 May; 127(1-3):351-66. PubMed ID: 16850239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Sleeping Beauty transposable element: evolution, regulation and genetic applications.
    Ivics Z; Kaufman CD; Zayed H; Miskey C; Walisko O; Izsvák Z
    Curr Issues Mol Biol; 2004 Jan; 6(1):43-55. PubMed ID: 14632258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering.
    Voigt F; Wiedemann L; Zuliani C; Querques I; Sebe A; Mátés L; Izsvák Z; Ivics Z; Barabas O
    Nat Commun; 2016 Mar; 7():11126. PubMed ID: 27025571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.