BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 12082470)

  • 1. Continuous blood gas monitoring using an in-dwelling optode method: clinical evaluation of the Neotrend sensor using a luer stub adaptor to access the umbilical artery catheter.
    Rais-Bahrami K; Rivera O; Mikesell GT; Short BL
    J Perinatol; 2002; 22(5):367-9. PubMed ID: 12082470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous blood gas monitoring using an in-dwelling optode method: comparison to intermittent arterial blood gas sampling in ECMO patients.
    Rais-Bahrami K; Rivera O; Mikesell GT; Short BL
    J Perinatol; 2002 Sep; 22(6):472-4. PubMed ID: 12168125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical validation of a continuous intravascular neonatal blood gas sensor introduced through an umbilical artery catheter.
    Meyers PA; Worwa C; Trusty R; Mammel MC
    Respir Care; 2002 Jun; 47(6):682-7. PubMed ID: 12036438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a new combined transcutaneous measurement of PCO2/pulse oximetry oxygen saturation ear sensor in newborn patients.
    Bernet-Buettiker V; Ugarte MJ; Frey B; Hug MI; Baenziger O; Weiss M
    Pediatrics; 2005 Jan; 115(1):e64-8. PubMed ID: 15601814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiences with continuous intra-arterial blood gas monitoring.
    Menzel M; Henze D; Soukup J; Engelbrecht K; Senderreck M; Clausen T; Radke J
    Minerva Anestesiol; 2001 Apr; 67(4):325-31. PubMed ID: 11376534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence optical fibre sensor provides accurate continuous oxygen detection in rabbit model with acute lung injury.
    Wang Y; Meng S; Song Y; Zhong W; Jiang J; Chen S; Bai C
    Respirology; 2010 Jan; 15(1):99-106. PubMed ID: 19947997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous pH and Pco2 monitoring during respiratory failure in children with the Paratrend 7 inserted into the peripheral venous system.
    Tobias JD; Connors D; Strauser L; Johnson T
    J Pediatr; 2000 May; 136(5):623-7. PubMed ID: 10802494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A discard volume of twice the deadspace ensures clinically accurate arterial blood gases and electrolytes and prevents unnecessary blood loss.
    Rickard CM; Couchman BA; Schmidt SJ; Dank A; Purdie DM
    Crit Care Med; 2003 Jun; 31(6):1654-8. PubMed ID: 12794400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical evaluation of the on-line Sensicath blood gas monitoring system.
    Myklejord DJ; Pritzker MR; Nicoloff DM; Emery AM; Emery RW
    Heart Surg Forum; 1998; 1(1):60-4. PubMed ID: 11276442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Non-invasive method of arterial oxygen saturation monitoring in the neonatal intensive care unit (with a review of blood oxygen monitoring methods)].
    Bosman S; Beyers R; Beganović N; Vader HL
    Tijdschr Kindergeneeskd; 1988 Feb; 56(1):20-6. PubMed ID: 3282343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous intra-arterial blood gas monitoring. A clinical experience.
    Paolillo G; Tosoni A; Mariani MA; Venturino M
    Minerva Anestesiol; 1994; 60(7-8):355-9. PubMed ID: 7800182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a fiberoptic blood gas monitor in neonates with congenital heart disease.
    Raake JL; Taeed R; Manning P; Pearl J; Schwartz SM; Nelson DP
    Respir Care; 2000 Sep; 45(9):1105-12. PubMed ID: 10980102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy and utility of a continuous intra-arterial blood gas monitoring system in pediatric patients.
    Coule LW; Truemper EJ; Steinhart CM; Lutin WA
    Crit Care Med; 2001 Feb; 29(2):420-6. PubMed ID: 11246326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrospective analysis of risks associated with an umbilical artery catheter system for continuous monitoring of arterial oxygen tension.
    Cohen RS; Ramachandran P; Kim EH; Glasscock GF
    J Perinatol; 1995; 15(3):195-8. PubMed ID: 7666267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous intra-arterial oxygen monitoring: accuracy and reliability in the surgical intensive care unit.
    Lemus JF; Kearney T; Margulies DR; Mackenzie DJ; Leyerle BJ; Shabot MM
    Am Surg; 1992 Dec; 58(12):740-2. PubMed ID: 1456597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical use of continuous arterial blood gas monitoring in the pediatric intensive care unit.
    Weiss IK; Fink S; Harrison R; Feldman JD; Brill JE
    Pediatrics; 1999 Feb; 103(2):440-5. PubMed ID: 9925838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous intra-arterial blood gas monitoring during thoracic surgery.
    Ishikawa S; Ohmi S; Nakazawa K; Makita K
    J Anesth; 2000; 14(3):119-23. PubMed ID: 14564577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heparinization of fluids infused through an umbilical artery catheter on catheter patency and frequency of complications.
    Rajani K; Goetzman BW; Wennberg RP; Turner E; Abildgaard C
    Pediatrics; 1979 Apr; 63(4):552-6. PubMed ID: 375178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low inferior vena caval catheters for hemodynamic and pulmonary function monitoring in pediatric critical care patients.
    Fernandez EG; Green TP; Sweeney M
    Pediatr Crit Care Med; 2004 Jan; 5(1):14-8. PubMed ID: 14697103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The umbilical arterial catheter: a formula for improved positioning in the very low birth weight infant.
    Wright IM; Owers M; Wagner M
    Pediatr Crit Care Med; 2008 Sep; 9(5):498-501. PubMed ID: 18679150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.