These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12083205)

  • 1. Nonlinear seismo-acoustic land mine detection and discrimination.
    Donskoy D; Ekimov A; Sedunov N; Tsionskiy M
    J Acoust Soc Am; 2002 Jun; 111(6):2705-14. PubMed ID: 12083205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wideband nonlinear time reversal seismo-acoustic method for landmine detection.
    Sutin A; Libbey B; Fillinger L; Sarvazyan A
    J Acoust Soc Am; 2009 Apr; 125(4):1906-10. PubMed ID: 19354365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear vibrations of buried landmines.
    Donskoy D; Reznik A; Zagrai A; Ekimov A
    J Acoust Soc Am; 2005 Feb; 117(2):690-700. PubMed ID: 15759689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear acoustic techniques for landmine detection.
    Korman MS; Sabatier JM
    J Acoust Soc Am; 2004 Dec; 116(6):3354-69. PubMed ID: 15658688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical signatures of TNT-filled land mines.
    Jenkins TF; Leggett DC; Miyares PH; Walsh ME; Ranney TA; Cragin JH; George V
    Talanta; 2001 May; 54(3):501-13. PubMed ID: 18968274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling.
    Xiang N; Sabatier JM
    J Acoust Soc Am; 2003 Mar; 113(3):1333-41. PubMed ID: 12656368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerometer measurements of acoustic-to-seismic coupling above buried objects.
    Attenborough K; Qin Q; Jefferis J; Heald G
    J Acoust Soc Am; 2007 Dec; 122(6):3230-41. PubMed ID: 18247735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser Doppler multi-beam differential vibration sensor for real-time continuous visualization of buried objects in multiple frequency bands.
    Aranchuk V; Johnson S; Aranchuk I; Hickey C
    Appl Opt; 2023 Aug; 62(23):G12-G17. PubMed ID: 37707058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LIBS for landmine detection and discrimination.
    Harmon RS; DeLucia FC; LaPointe A; Winkel RJ; Miziolek AW
    Anal Bioanal Chem; 2006 Jul; 385(6):1140-8. PubMed ID: 16724215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of electromagnetic wave scattering from a random rough surface with three-dimensional penetrable buried object: mine detection application using the steepest-descent fast multipole method.
    El-Shenawee M; Rappaport C; Silevitch M
    J Opt Soc Am A Opt Image Sci Vis; 2001 Dec; 18(12):3077-84. PubMed ID: 11760205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Millimeter wave imaging system for land mine detection.
    Du Bosq TW; Lopez-Alonso JM; Boreman GD
    Appl Opt; 2006 Aug; 45(22):5686-92. PubMed ID: 16855667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weakly nonlinear oscillations of a compliant object buried in soil.
    Zabolotskaya EA; Ilinskii YA; Hamilton MF
    J Acoust Soc Am; 2009 Apr; 125(4):2035-40. PubMed ID: 19354379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing post-industrial land cover change at the Pine Point Mine, NWT, Canada using multi-temporal Landsat analysis and landscape metrics.
    LeClerc E; Wiersma YF
    Environ Monit Assess; 2017 Apr; 189(4):185. PubMed ID: 28349312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant African pouched rats (Cricetomys gambianus) that work on tilled soil accurately detect land mines.
    Edwards TL; Cox C; Weetjens B; Tewelde T; Poling A
    J Appl Behav Anal; 2015 Sep; 48(3):696-700. PubMed ID: 25962550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser Doppler multi-beam differential vibration sensor based on a line-scan CMOS camera for real-time buried objects detection.
    Aranchuk V; Johnson S; Aranchuk I; Hickey C
    Opt Express; 2023 Jan; 31(1):235-247. PubMed ID: 36606963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of microphones as near-ground sensors for seismic detection of buried landmines.
    Larson GD; Martin JS; Scott WR
    J Acoust Soc Am; 2007 Jul; 122(1):253-8. PubMed ID: 17614485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test.
    Huang B; Liu J; Lin P; Ling D
    ScientificWorldJournal; 2014; 2014():838546. PubMed ID: 25121140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochars Reduce Mine Land Soil Bioavailable Metals.
    Ippolito JA; Berry CM; Strawn DG; Novak JM; Levine J; Harley A
    J Environ Qual; 2017 Mar; 46(2):411-419. PubMed ID: 28380572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India).
    Rana V; Maiti SK
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9745-9758. PubMed ID: 29368202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements and modeling of acoustic scattering from partially and completely buried spherical shells.
    Tesei A; Maguer A; Fox WL; Lim R; Schmidt H
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1817-30. PubMed ID: 12430795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.