BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 1208375)

  • 21. [Amino acid composition of Candida tropicalis K-41 cultured on media with saturated and unsaturated hydrocarbons].
    Osadcha AI; Masumian VIa; Pchelintseva RK
    Mikrobiol Zh; 1975; 37(4):418-22. PubMed ID: 1214666
    [No Abstract]   [Full Text] [Related]  

  • 22. [Lipid composition of certain predatory species of fungi of the genus Arthrobotrys].
    Radzhabova AA; Mekhtieva NA; Bekhtereva MN; Gasanova SG; Boĭkova LA
    Mikrobiologiia; 1980; 49(5):740-5. PubMed ID: 7192360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae.
    King DH; Perry JJ
    Can J Microbiol; 1975 Jan; 21(1):85-9. PubMed ID: 1116040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The growth of thermophilic fungi strains Aspergillus fumigatus and Mucor lusitanicus in n-alkane medium (author's transl)].
    Voigt A; Bemmann W; Tröger R
    Zentralbl Bakteriol Naturwiss; 1981; 136(7):590-602. PubMed ID: 7034398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beyond TPH: health-based evaluation of petroleum hydrocarbon exposures.
    Hutcheson MS; Pedersen D; Anastas ND; Fitzgerald J; Silverman D
    Regul Toxicol Pharmacol; 1996 Aug; 24(1 Pt 1):85-101. PubMed ID: 8921548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of hydrocarbons by members of the genus Candida. II. Oxidation of n-alkanes and l-alkenes by Candida lipolytica.
    Klug MJ; Markovetz AJ
    J Bacteriol; 1967 Jun; 93(6):1847-52. PubMed ID: 6025303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MICROBIAL INCORPORATION OF FATTY ACIDS DERIVED FROM N-ALKANES INTO GLYCERIDES AND WAXES.
    DAVIS JB
    Appl Microbiol; 1964 May; 12(3):210-4. PubMed ID: 14170957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nutrition and growth of the moderately halophilic bacteria Micrococcus morrhuae K-17 and Micrococcus luteus K-15.
    Chan K; Leung OC
    Microbios; 1979; 25(100):71-84. PubMed ID: 542132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Several patterns in lipid biosynthesis by thermo-tolerant Candida tropicalis yeasts during carbohydrate and hydrocarbon nutrition].
    Loĭko ZI; Isakova DM; Kvasnikov EI
    Mikrobiologiia; 1974; 43(6):1005-9. PubMed ID: 4449487
    [No Abstract]   [Full Text] [Related]  

  • 31. [Effect of temperature on the synthesis of protein and individual amino acids by the thermotolerant yeast Candida tropicalis on media with hydrocarbons].
    Kvasnikov EI; Isakova DM; Burakova AA; Skofenko AA; Todosiĭchuk SR
    Mikrobiologiia; 1976 JUL-AUG; 45(4):636-9. PubMed ID: 979682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures.
    Papanikolaou S; Chevalot I; Komaitis M; Marc I; Aggelis G
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):308-12. PubMed ID: 11935181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [n-Alkane oxidation by propionic acid bacteria].
    Vorob'eva LI; Kraeva NI; Ebringer L; Ol'sinskaia NL
    Mikrobiologiia; 1979; 48(1):33-8. PubMed ID: 423808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans.
    Napolitano R; Juárez MP
    Arch Biochem Biophys; 1997 Aug; 344(1):208-14. PubMed ID: 9244399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial assimilation of hydrocarbons. I. Fatty acids derived from normal alkanes.
    Makula R; Finnerty WR
    J Bacteriol; 1968 Jun; 95(6):2102-7. PubMed ID: 5669891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological origins of normal-chain hydrocarbons: a pathway model based on cuticular wax analyses of maize silks.
    Perera MA; Qin W; Yandeau-Nelson M; Fan L; Dixon P; Nikolau BJ
    Plant J; 2010 Nov; 64(4):618-32. PubMed ID: 21070415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Lipid composition of Fusarium sambucinum grown in a fermenter on media with different carbon sources].
    Ievleva NR; Bragintseva LM
    Mikrobiologiia; 1984; 53(4):628-32. PubMed ID: 6482751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lysine production from hydrocarbon by Micrococcus varians 2Fa.
    Sen SK; Chatterjee M; Chatterjee SP
    Acta Microbiol Pol; 1983; 32(2):139-45. PubMed ID: 6196944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast.
    Zhu Z; Zhou YJ; Kang MK; Krivoruchko A; Buijs NA; Nielsen J
    Metab Eng; 2017 Nov; 44():81-88. PubMed ID: 28939277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Lipid fatty acid composition of fungi in the genus Aspergillus grown on media with various sources of nitrogen].
    Kolesnikova IG; Tolstikova GV
    Mikrobiologiia; 1984; 53(5):826-9. PubMed ID: 6513821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.