These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 12083888)
1. Lipase-assisted generation of 2-methyl-3-furanthiol and 2-furfurylthiol from thioacetates. Bel Rhlid R; Matthey-Doret W; Blank I; Fay LB; Juillerat MA J Agric Food Chem; 2002 Jul; 50(14):4087-90. PubMed ID: 12083888 [TBL] [Abstract][Full Text] [Related]
2. Chemo-enzymatic synthesis of α-terpineol thioacetate and thiol derivatives and their use as flavouring compounds. Bel-Rhlid R; Fleury Rey Y; Welti D; Fumeaux R; Moine D Yeast; 2015 Jan; 32(1):115-22. PubMed ID: 25400090 [TBL] [Abstract][Full Text] [Related]
3. Generation of 2-Furfurylthiol by Carbon-Sulfur Lyase from the Baijiu Yeast Saccharomyces cerevisiae G20. Zha M; Sun B; Yin S; Mehmood A; Cheng L; Wang C J Agric Food Chem; 2018 Mar; 66(9):2114-2120. PubMed ID: 29436228 [TBL] [Abstract][Full Text] [Related]
4. STR3 and CYS3 Contribute to 2-Furfurylthiol Biosynthesis in Chinese Sesame-Flavored Baijiu Yeast. Zha M; Yin S; Sun B; Wang X; Wang C J Agric Food Chem; 2017 Jul; 65(27):5503-5511. PubMed ID: 28603986 [TBL] [Abstract][Full Text] [Related]
5. Stability of thiols in an aqueous process flavoring. van Seeventer PB; Weenen H; Winkel C; Kerler J J Agric Food Chem; 2001 Sep; 49(9):4292-5. PubMed ID: 11559126 [TBL] [Abstract][Full Text] [Related]
6. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832 [TBL] [Abstract][Full Text] [Related]
7. Enzyme catalysis in organic solvents: influence of water content, solvent composition and temperature on Candida rugosa lipase catalyzed transesterification. Herbst D; Peper S; Niemeyer B J Biotechnol; 2012 Dec; 162(4):398-403. PubMed ID: 22465292 [TBL] [Abstract][Full Text] [Related]
8. Optimization of the Maillard reaction of xylose with cysteine for modulating aroma compound formation in fermented tilapia fish head hydrolysate using response surface methodology. Gao P; Xia W; Li X; Liu S Food Chem; 2020 Nov; 331():127353. PubMed ID: 32580127 [TBL] [Abstract][Full Text] [Related]
9. Generation of thiols by biotransformation of cysteine-aldehyde conjugates with baker's yeast. Huynh-Ba T; Matthey-Doret W; Fay LB; Bel Rhlid R J Agric Food Chem; 2003 Jun; 51(12):3629-35. PubMed ID: 12769537 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of coffee brew aroma through control of the aroma staling pathway of 2-furfurylthiol. Sun Z; Cui H; Yang N; Ayed C; Zhang X; Fisk ID Food Chem; 2020 Aug; 322():126754. PubMed ID: 32283367 [TBL] [Abstract][Full Text] [Related]
11. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester. Yilmaz E; Can K; Sezgin M; Yilmaz M Bioresour Technol; 2011 Jan; 102(2):499-506. PubMed ID: 20846857 [TBL] [Abstract][Full Text] [Related]
12. Quantitative Model Studies on the Effectiveness of Different Precursor Systems in the Formation of the Intense Food Odorants 2-Furfurylthiol and 2-Methyl-3-furanthiol. Hofmann T; Schieberle P J Agric Food Chem; 1998 Jan; 46(1):235-241. PubMed ID: 10554225 [TBL] [Abstract][Full Text] [Related]
13. The role of microemulsions in lipase-catalyzed hydrolysis reactions. Lopez F; Cinelli G; Colella M; De Leonardis A; Palazzo G; Ambrosone L Biotechnol Prog; 2014; 30(2):360-6. PubMed ID: 24585724 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic synthesis of phytosterol esters catalyzed by Candida rugosa lipase in water-in-[Bmim]PF6 microemulsion. Zeng C; Qi S; Li Z; Luo R; Yang B; Wang Y Bioprocess Biosyst Eng; 2015 May; 38(5):939-46. PubMed ID: 25575761 [TBL] [Abstract][Full Text] [Related]
16. Preparation of Biodiesel with Liquid Synergetic Lipases from Rapeseed Oil Deodorizer Distillate. Zeng L; He Y; Jiao L; Li K; Yan Y Appl Biochem Biotechnol; 2017 Nov; 183(3):778-791. PubMed ID: 28353044 [TBL] [Abstract][Full Text] [Related]
17. Study of microwave effects on the lipase-catalyzed hydrolysis. Chen CC; Reddy PM; Devi CS; Chang PC; Ho YP Enzyme Microb Technol; 2016 Jan; 82():164-172. PubMed ID: 26672464 [TBL] [Abstract][Full Text] [Related]
18. Stereoselectivity of the generation of 3-mercaptohexanal and 3-mercaptohexanol by lipase-catalyzed hydrolysis of 3-acetylthioesters. Wakabayashi H; Wakabayashi M; Eisenreich W; Engel KH J Agric Food Chem; 2003 Jul; 51(15):4349-55. PubMed ID: 12848509 [TBL] [Abstract][Full Text] [Related]
19. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media. López N; Pernas MA; Pastrana LM; Sánchez A; Valero F; Rúa ML Biotechnol Prog; 2004; 20(1):65-73. PubMed ID: 14763825 [TBL] [Abstract][Full Text] [Related]
20. Enantiodivergent preparation of optically active oxindoles having a stereogenic quaternary carbon center at the C3 position via the lipase-catalyzed desymmetrization protocol: effective use of 2-furoates for either enzymatic esterification or hydrolysis. Akai S; Tsujino T; Akiyama E; Tanimoto K; Naka T; Kita Y J Org Chem; 2004 Apr; 69(7):2478-86. PubMed ID: 15049648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]