These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 12083888)
41. Effects of alcohol and buffer treatments on the activity and enantioselectivity of Candida rugosa lipase. Takaç S; Unlü AE Prep Biochem Biotechnol; 2009; 39(2):124-41. PubMed ID: 19291575 [TBL] [Abstract][Full Text] [Related]
42. Calix[n]arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (R/S)-naproxen methyl ester. Akoz E; Akbulut OY; Yilmaz M Appl Biochem Biotechnol; 2014 Jan; 172(1):509-23. PubMed ID: 24092454 [TBL] [Abstract][Full Text] [Related]
43. High-yield synthesis of wax esters catalysed by modified Candida rugosa lipase. Guncheva MH; Zhiryakova D Biotechnol Lett; 2008 Mar; 30(3):509-12. PubMed ID: 17957342 [TBL] [Abstract][Full Text] [Related]
44. Immobilization of Candida rugosa lipase on magnetized Dacron: kinetic study. Pimentel MC; Leāo AB; Melo EH; Ledingham WM; Filho JL; Sivewright M; Kennedy JF Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(2):221-35. PubMed ID: 17453706 [TBL] [Abstract][Full Text] [Related]
45. Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads. Gilani SL; Najafpour GD; Heydarzadeh HD; Moghadamnia A Chirality; 2017 Jun; 29(6):304-314. PubMed ID: 28422452 [TBL] [Abstract][Full Text] [Related]
46. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate. Che Marzuki NH; Mahat NA; Huyop F; Buang NA; Wahab RA Appl Biochem Biotechnol; 2015 Oct; 177(4):967-84. PubMed ID: 26267406 [TBL] [Abstract][Full Text] [Related]
47. 2-Methyl-3-furanthiol and methional are possible off-flavors in stored orange juice: aroma-similarity, NIF/SNIF GC-O, and GC analyses. Bezman Y; Rouseff RL; Naim M J Agric Food Chem; 2001 Nov; 49(11):5425-32. PubMed ID: 11714338 [TBL] [Abstract][Full Text] [Related]
48. Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calix(aza)crown. Uyanik A; Sen N; Yilmaz M Bioresour Technol; 2011 Mar; 102(6):4313-8. PubMed ID: 21256747 [TBL] [Abstract][Full Text] [Related]
49. Hydrolysis of steryl esters by a lipase (Lip 3) from Candida rugosa. Tenkanen M; Kontkanen H; Isoniemi R; Spetz P; Holmbom B Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):120-7. PubMed ID: 12382052 [TBL] [Abstract][Full Text] [Related]
50. Contribution of 2-methyl-3-furanthiol to the cooked meat-like aroma of fermented soy sauce. Meng Q; Kitagawa R; Imamura M; Katayama H; Obata A; Sugawara E Biosci Biotechnol Biochem; 2017 Jan; 81(1):168-172. PubMed ID: 27691841 [TBL] [Abstract][Full Text] [Related]
51. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase. James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082 [TBL] [Abstract][Full Text] [Related]
52. Ultrasound assisted enzymatic conversion of non edible oil to methyl esters. Jadhav SH; Gogate PR Ultrason Sonochem; 2014 Jul; 21(4):1374-81. PubMed ID: 24491601 [TBL] [Abstract][Full Text] [Related]
53. The catalytic efficiency of lipase in a novel water-in-[Bmim][PF6] microemulsion stabilized by both AOT and Triton X-100. Xue L; Li Y; Zou F; Lu L; Zhao Y; Huang X; Qu Y Colloids Surf B Biointerfaces; 2012 Apr; 92():360-6. PubMed ID: 22218335 [TBL] [Abstract][Full Text] [Related]
54. Hydration-aggregation pretreatment for drastically improving esterification activity of commercial lipases in non-aqueous media. Katayama M; Kuroiwa T; Suzuno K; Igusa A; Matsui T; Kanazawa A Enzyme Microb Technol; 2017 Oct; 105():30-37. PubMed ID: 28756858 [TBL] [Abstract][Full Text] [Related]
55. Alpha-mercaptoketone formation during the maillard reaction of cysteine and [1-(13)C]ribose. Cerny C; Davidek T J Agric Food Chem; 2004 Feb; 52(4):958-61. PubMed ID: 14969557 [TBL] [Abstract][Full Text] [Related]
56. Effects of organic solvents on lipase for fat splitting. Kim KH; Kwon DY; Rhee JS Lipids; 1984 Dec; 19(12):975-7. PubMed ID: 6527614 [TBL] [Abstract][Full Text] [Related]
57. Enzymatic hydrolysis in an aqueous organic two-phase system using centrifugal partition chromatography. Krause J; Oeldorf T; Schembecker G; Merz J J Chromatogr A; 2015 Apr; 1391():72-9. PubMed ID: 25773726 [TBL] [Abstract][Full Text] [Related]
58. Enantioselective enzymatic hydrolysis of racemic drugs by encapsulation in sol-gel magnetic sporopollenin. Yilmaz E Bioprocess Biosyst Eng; 2012 May; 35(4):493-502. PubMed ID: 21932062 [TBL] [Abstract][Full Text] [Related]
59. Aroma extract dilution analysis of a beeflike process flavor from extruded enzyme-hydrolyzed soybean protein. Baek HH; Kim CJ; Ahn BH; Nam HS; Cadwallader KR J Agric Food Chem; 2001 Feb; 49(2):790-3. PubMed ID: 11262030 [TBL] [Abstract][Full Text] [Related]
60. Real time measurement and control of thermodynamic water activities for enzymatic catalysis in hexane. Kang IJ; Pfromm PH; Rezac ME J Biotechnol; 2005 Sep; 119(2):147-54. PubMed ID: 15941606 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]