BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12084058)

  • 1. Role of histidine 42 in ascorbate peroxidase. Kinetic analysis of the H42A and H42E variants.
    Lad L; Mewies M; Basran J; Scrutton NS; Raven EL
    Eur J Biochem; 2002 Jul; 269(13):3182-92. PubMed ID: 12084058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of a tryptophan radical in the reaction of ascorbate peroxidase with hydrogen peroxide.
    Hiner AN; Martínez JI; Arnao MB; Acosta M; Turner DD; Lloyd Raven E; Rodríguez-López JN
    Eur J Biochem; 2001 May; 268(10):3091-8. PubMed ID: 11358529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the active site of ascorbate peroxidase.
    Celik A; Cullis PM; Sutcliffe MJ; Sangar R; Raven EL
    Eur J Biochem; 2001 Jan; 268(1):78-85. PubMed ID: 11121105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rescue of His-42 --> Ala horseradish peroxidase by a Phe-41 --> His mutation. Engineering of a surrogate catalytic histidine.
    Savenkova MI; Newmyer SL; Montellano PR
    J Biol Chem; 1996 Oct; 271(40):24598-603. PubMed ID: 8798724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rescue of the catalytic activity of an H42A mutant of horseradish peroxidase by exogenous imidazoles.
    Newmyer SL; de Montellano PR
    J Biol Chem; 1996 Jun; 271(25):14891-6. PubMed ID: 8663036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic activities and structural properties of horseradish peroxidase distal His42 --> Glu or Gln mutant.
    Tanaka M; Ishimori K; Mukai M; Kitagawa T; Morishima I
    Biochemistry; 1997 Aug; 36(32):9889-98. PubMed ID: 9245421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate binding and catalytic mechanism in ascorbate peroxidase: evidence for two ascorbate binding sites.
    Lad L; Mewies M; Raven EL
    Biochemistry; 2002 Nov; 41(46):13774-81. PubMed ID: 12427040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of the two horseradish peroxidase catalytic residue variants H42E and R38S/H42E: implications for the catalytic cycle.
    Meno K; Jennings S; Smith AT; Henriksen A; Gajhede M
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 2):1803-12. PubMed ID: 12351824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the K(+)-site mutant of ascorbate peroxidase: mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side.
    Cheek J; Mandelman D; Poulos TL; Dawson JH
    J Biol Inorg Chem; 1999 Feb; 4(1):64-72. PubMed ID: 10499104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autocatalytic formation of green heme: evidence for H2O2-dependent formation of a covalent methionine-heme linkage in ascorbate peroxidase.
    Metcalfe CL; Ott M; Patel N; Singh K; Mistry SC; Goff HM; Raven EL
    J Am Chem Soc; 2004 Dec; 126(49):16242-8. PubMed ID: 15584761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of tryptophan-208 residue in cytochrome c oxidation by ascorbate peroxidase from Leishmania major-kinetic studies on Trp208Phe mutant and wild type enzyme.
    Yadav RK; Dolai S; Pal S; Adak S
    Biochim Biophys Acta; 2008 May; 1784(5):863-71. PubMed ID: 18342641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the distal his in imparting imidazolate character to the proximal his in heme peroxidase: (1)h NMR spectroscopic study of cyanide-inhibited his42-->ala horseradish peroxidase.
    de Ropp JS; Sham S; Asokan A; Newmyer S; Ortiz de Montellano PR; La Mar GN
    J Am Chem Soc; 2002 Sep; 124(37):11029-37. PubMed ID: 12224950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and crystallization of recombinant pea cytosolic ascorbate peroxidase.
    Patterson WR; Poulos TL
    J Biol Chem; 1994 Jun; 269(25):17020-4. PubMed ID: 8006006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horseradish peroxidase: partial rescue of the His-42 --> Ala mutant by a concurrent Asn-70 --> Asp mutation.
    Savenkova MI; Ortiz de Montellano PR
    Arch Biochem Biophys; 1998 Mar; 351(2):286-93. PubMed ID: 9514658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalase-peroxidases in cyanobacteria--similarities and differences to ascorbate peroxidases.
    Obinger C; Regelsberger G; Furtmüller PG; Jakopitsch C; Rüker F; Pircher A; Peschek GA
    Free Radic Res; 1999 Dec; 31 Suppl():S243-9. PubMed ID: 10694066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and spectral properties of pea cytosolic ascorbate peroxidase.
    Marquez LA; Quitoriano M; Zilinskas BA; Dunford HB
    FEBS Lett; 1996 Jul; 389(2):153-6. PubMed ID: 8766820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total conversion of bifunctional catalase-peroxidase (KatG) to monofunctional peroxidase by exchange of a conserved distal side tyrosine.
    Jakopitsch C; Auer M; Ivancich A; Rüker F; Furtmüller PG; Obinger C
    J Biol Chem; 2003 May; 278(22):20185-91. PubMed ID: 12649295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of distal His mutation on the peroxynitrite reactivity of Leishmania major peroxidase.
    Saha R; Bose M; Santara SS; Roy J; Yadav RK; Adak S
    Biochim Biophys Acta; 2013 Oct; 1834(10):2057-63. PubMed ID: 23831153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical, spectroscopic and structural investigation of the substrate-binding site in ascorbate peroxidase.
    Hill AP; Modi S; Sutcliffe MJ; Turner DD; Gilfoyle DJ; Smith AT; Tam BM; Lloyd E
    Eur J Biochem; 1997 Sep; 248(2):347-54. PubMed ID: 9346287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the kinetic and redox properties of the NADH peroxidase R303M mutant: correlation with the crystal structure.
    Crane EJ; Yeh JI; Luba J; Claiborne A
    Biochemistry; 2000 Aug; 39(34):10353-64. PubMed ID: 10956025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.