BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 12084467)

  • 1. Inhibitors of dihydrofolate reductase in Leishmania and trypanosomes.
    Gilbert IH
    Biochim Biophys Acta; 2002 Jul; 1587(2-3):249-57. PubMed ID: 12084467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis, and evaluation of inhibitors of trypanosomal and leishmanial dihydrofolate reductase.
    Chowdhury SF; Villamor VB; Guerrero RH; Leal I; Brun R; Croft SL; Goodman JM; Maes L; Ruiz-Perez LM; Pacanowska DG; Gilbert IH
    J Med Chem; 1999 Oct; 42(21):4300-12. PubMed ID: 10543874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase.
    Schormann N; Velu SE; Murugesan S; Senkovich O; Walker K; Chenna BC; Shinkre B; Desai A; Chattopadhyay D
    Bioorg Med Chem; 2010 Jun; 18(11):4056-66. PubMed ID: 20452776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery.
    das Neves GM; Kagami LP; Gonçalves IL; Eifler-Lima VL
    Future Med Chem; 2019 Aug; 11(16):2107-2130. PubMed ID: 31370699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel inhibitors of Trypanosoma cruzi dihydrofolate reductase.
    Zuccotto F; Zvelebil M; Brun R; Chowdhury SF; Di Lucrezia R; Leal I; Maes L; Ruiz-Perez LM; Gonzalez Pacanowska D; Gilbert IH
    Eur J Med Chem; 2001 May; 36(5):395-405. PubMed ID: 11451529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis.
    Bastos IM; Motta FN; Grellier P; Santana JM
    Curr Med Chem; 2013; 20(25):3103-15. PubMed ID: 23514419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and testing of 5-benzyl-2,4-diaminopyrimidines as potential inhibitors of leishmanial and trypanosomal dihydrofolate reductase.
    Chowdhury SF; Guerrero RH; Brun R; Ruiz-Perez LM; Pacanowska DG; Gilbert IH
    J Enzyme Inhib Med Chem; 2002 Oct; 17(5):293-302. PubMed ID: 12683746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parasitology. Drugs to combat tropical protozoan parasites.
    Gelb MH; Hol WG
    Science; 2002 Jul; 297(5580):343-4. PubMed ID: 12130767
    [No Abstract]   [Full Text] [Related]  

  • 9. Identification of Selective Inhibitors of
    Sharma VK; Bharatam PV
    J Comput Biol; 2021 Jan; 28(1):43-59. PubMed ID: 32207987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dihydrofolate reductase: a potential drug target in trypanosomes and leishmania.
    Zuccotto F; Martin AC; Laskowski RA; Thornton JM; Gilbert IH
    J Comput Aided Mol Des; 1998 May; 12(3):241-57. PubMed ID: 9749368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinetoplastid chemotherapy revisited: current drugs, recent advances and future perspectives.
    Castillo E; Dea-Ayuela MA; Bolás-Fernández F; Rangel M; González-Rosende ME
    Curr Med Chem; 2010; 17(33):4027-51. PubMed ID: 20939823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipophilic antifolate trimetrexate is a potent inhibitor of Trypanosoma cruzi: prospect for chemotherapy of Chagas' disease.
    Senkovich O; Bhatia V; Garg N; Chattopadhyay D
    Antimicrob Agents Chemother; 2005 Aug; 49(8):3234-8. PubMed ID: 16048931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2,4-Diaminopyrimidines as inhibitors of Leishmanial and Trypanosomal dihydrofolate reductase.
    Pez D; Leal I; Zuccotto F; Boussard C; Brun R; Croft SL; Yardley V; Ruiz Perez LM; Gonzalez Pacanowska D; Gilbert IH
    Bioorg Med Chem; 2003 Nov; 11(22):4693-711. PubMed ID: 14556785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavoprotein structure and mechanism. 5. Trypanothione reductase and lipoamide dehydrogenase as targets for a structure-based drug design.
    Krauth-Siegel RL; Schöneck R
    FASEB J; 1995 Sep; 9(12):1138-46. PubMed ID: 7672506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism.
    Saccoliti F; Di Santo R; Costi R
    ChemMedChem; 2020 Dec; 15(24):2420-2435. PubMed ID: 32805075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology modelling of the dihydrofolate reductase-thymidylate synthase bifunctional enzyme of Leishmania major, a potential target for rational drug design in leishmaniasis.
    McKie JH
    Drug Des Discov; 1994 Jun; 11(4):269-88. PubMed ID: 7727680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of cysteine-reactive small molecules in drug discovery for trypanosomal disease.
    Nicoll-Griffith DA
    Expert Opin Drug Discov; 2012 Apr; 7(4):353-66. PubMed ID: 22458506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine proteases as potential targets for anti-trypanosomatid drug discovery.
    Judice WAS; Ferraz LS; Lopes RM; Vianna LDS; Siqueira FDS; Di Iorio JF; Dalzoto LAM; Trujilho MNR; Santos TDR; Machado MFM; Rodrigues T
    Bioorg Med Chem; 2021 Sep; 46():116365. PubMed ID: 34419821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diamidines as antitrypanosomal, antileishmanial and antimalarial agents.
    Werbovetz K
    Curr Opin Investig Drugs; 2006 Feb; 7(2):147-57. PubMed ID: 16499285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sesquiterpene Lactones with Dual Inhibitory Activity against the
    Possart K; Herrmann FC; Jose J; Costi MP; Schmidt TJ
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.